KEYWORDS: Crystals, Silicon, Near field scanning optical microscopy, Near field optics, Semiconductor lasers, Laser processing, Semiconductors, Laser crystals, Scanning electron microscopy, Nanowires
Recent research results are presented where lasers of different pulse durations and wavelengths have been coupled to
near-field-scanning optical microscopes (NSOMs) through apertured bent cantilever fiber probes and atomic force
microscope (AFM) tips in apertureless configurations. Experiments have been conducted on the surface modification of
metals and semiconductor materials. By combining nanoscale ablative material removal with subsequent chemical
etching steps, ablation nanolithography and patterning of fused silica and crystalline silicon wafers has been
demonstrated. Confinement of laser-induced crystallization to nanometric scales has also been shown. In-situ observation of the nanoscale materials modification was conducted by coupling the NSOM tips with a scanning electron
microscope (SEM). Nucleation and growth of semiconductor materials have been achieved by laser chemical vapor
deposition (LCVD) at the nanoscale level. Locally selective growth of crystalline silicon nanowires with controlled size,
heterogeneity and nanometric placement accuracy has been accomplished.
KEYWORDS: Oxygen, Solar energy, Solids, Semiconductors, Optoelectronics, Photovoltaics, Chemical elements, Chemical species, Signal detection, Data modeling
We have studied the effects of composition and hydrostatic pressure on the direct optical transitions at the Γ point of the Brillouin zone in MBE-grown ZnOxSe1-x and ion-implantation-synthesized Zn1-yMnyOxTe1-x alloys. We observe a large O-induced band-gap reduction and a change in the pressure dependence of the fundamental band gap of the II-O-VI alloys. The effects are similar to those previously observed and extensively studied in highly mismatched III-N-V alloys. Our results are well explained in terms of the band anticrossing model that considers an anticrossing interaction between the highly localized oxygen states and the extended states of the conduction band of II-VI compounds. The O-induced modification of the conduction band structure offers an interesting possibility of using small amounts of O to engineer the optoelectronics properties of group II-O-VI alloys.
Conference Committee Involvement (1)
Laser Applications in Microelectronic and Optoelectronic Manufacturing XI
23 January 2006 | San Jose, California, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.