The capability to rapidly augment airbases with bio-concrete infrastructure to support parking, loading, unloading, rearming, and refueling operations is of interest to the Air Force, because it requires transportation of fewer raw materials to remote sites. Automation of the bio-cement delivery further reduces logistical requirements and mitigates hazards to personnel, especially in contested or austere environments. In this paper we discuss the full-stack development and integration of a robotic applique for a commercial tractor and present the test results for autonomous delivery of bio-cement bacteria, feed stock, and water for stabilization of a sandy test area. The tractor autonomously navigates, sprays, and avoids obstacles using robust and economical off-the-shelf components and software. For this first phase of the project, we employ GNSS for localization and automotive lidar for obstacle detection. We report on the design of the robotic applique, including the mechanical, electrical, and software components, which are mostly commercial-off-the-shelf or open source. We discuss the results of testing and calibration including tests of towing capacity, calibration of steering, measurement of liquid spray distribution, measurement of tracking errors, and determination of repeatability of positioning for refilling of the reservoir. We also examine higher order behaviors and chart a path forward for future development, which includes GNSS-denied navigation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.