Controllable doping in semiconductor nanowires is essential for development of optoelectronic devices. Despite great progress, a fundamental challenge remains in controlling the uniformity of doping, particularly in the presence of relatively high levels of geometrical inhomogeneity in bottom-up growth. A relatively high doping level of 1E18 cm-3 corresponds to just ~1000 activated dopants in a 2µm long, 50nm diameter nanowire. High-throughput photoluminescence spectroscopy enables the collection of doping distributions across many (>10k) nanowires, but geometric variation adds additional uncertainty to the modelling. We present an approach that uses large datasets of doping and emission intensity to infer both doping and diameter across a growth, and apply Bayesian methods to study the underlying distributions in Zn-doped aerotaxy-grown GaAs nanowires. This new big-data enabled approach provides a route to exploit inherent inhomogeneity to reveal fundamental recombination mechanisms.
Material and functional stability remains a major issues in field of perovskite photovoltaics. To achieve a long device lifetime, it is crucial that we understand and optimize the lifetime of the material itself. One-step antisolvent processing is a facile method to enhance stability. Herein, we report that changes in the degradation process of perovskite films is modified by the antisolvent treatment in comparison to the conventional film without the process which we measure by monitoring the emission. Perovskite films prepared with anti-solvent processing have improved film morphology and reduced evolution of surface metallic lead, which correlated with improved film lifetimes.
III-V semiconductor nanowires allow easy hetero-integration of optoelectronic components onto silicon due to efficient strain relaxation, well-understood design approaches and scalability. However continuous room temperature lasing has proven elusive. A key challenge is performing repeatable single-wire characterization { each wire can be different due to local growth conditions present during bottom-up growth. Here, we describe an approach using large-scale population studies which exploit inherent inhomogeneity to understand the complex interplay of geometric design, crystal structure, and material quality. By correlating nanowire length with threshold for hundreds of nanowire lasers, this technique reveals core-reabsorption as the critical limiting process in multiple-quantum-well nanowire lasers. By incorporating higher band-gap nanowire core, this effect is eliminated, providing reflectivity dominated behavior.
III–V semiconductor nanowires combine the properties of III–V materials with the unique advantages of the nanowire geometry, allowing efficient room temperature photodetection across a wide range of photon energies, from a few eV down to meV. For example, due to their nanoscale size, these show great promise as sub-wavelength terahertz (THz) detectors for near-field imaging or detecting elements within a highly integrated on-chip THz spectrometer. We discuss recent advances in engineering a number of sensitive photonic devices based on III–V nanowires, including InAs nanowires with tunable photoresponse, THz polarisers and THz detectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.