We report our in-house R&D efforts of designing and developing key integrated photonic devices and technologies for a chip-scale optical oscillator and/or clock. This would provide precision sources to RF-photonic systems. It could also be the basic building block for a photonic technology to provide positioning, navigation, and timing as well as 5G networks. Recently, optical frequency comb (OFC)-based timing systems have been demonstrated for ultra-precision time transfer. Our goal is to develop a semiconductor-based, integrated photonic chip to reduce the size, weight, and power consumption, and cost of these systems. Our approach is to use a self-referenced interferometric locking circuit to provide short-term stabilization to a micro-resonator-based OFC. For long-term stabilization, we use an epsilon-near-zero (ENZ) metamaterial to design an environment-insensitive cavity/resonator, thereby enabling a chip-scale optical long-holdover clock.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.