Tissue biopsy, the sampling of human cells using surgery, constitutes a significant barrier to easy and frequent monitoring of cancer patients. In liquid biopsy, the blood of cancer patients is instead sampled to monitor the level of cancer biomarkers. Detecting nucleic acid biomarkers for cancer diagnosis requires the enzymatic amplification of sequences to be identified to achieve the needed level of sensitivity. Such a step introduces constraints and drawbacks in the assays, and efforts have been made to identify innovative amplification-free protocols for DNA detection. The possibilities offered by nanoparticle-enhanced surface plasmon resonance imaging in detecting non-amplified DNA circulating in cancer patients’ blood will be discussed in the context of applications to cancer diagnosis based on liquid biopsy. The role played by the proper design of the plasmonic sensor surface will also be discussed with specific emphasis on a new dual-functional low-fouling poly-L-lysine-based surface layer.
Human epidermal growth factor receptor 2 (HER2) over-expression occurs in 15–20% of breast cancers and it is generally associated with a dismal prognosis. In this work, we report on the use of one-dimensional photonic crystal biochips to detect clinically relevant concentrations of HER2 in human plasma samples. To this aim, we optimized an optical read-out system, combining both label-free and fluorescence detection, which makes use of biochips tailored with specific proteins for specific biological recognition. Our biochips were used to discriminate HER2 positive/negative human plasma samples providing a solid and reliable tool for clinical diagnostics.
We report on the development of a biosensing platform that combines label-free and fluorescence based detection on disposable Bloch surface wave biochips. This system is applied to the detection of the HER2-neu/ErbB2 clinical biomarker related to breast cancer development. We first describe the design and fabrication of the BSW biochips as well as the principle of operation of the optical reading instrument. Then, the approaches for surface functionalization and immobilization of proteins for specific detection on the biochips are discussed. Finally, experimental results on a sandwich immunoassay for ErbB2 detection in cell lysates are presented.
A biosensor platform based on Bloch Surface Waves and operating in angular interrogation mode is applied to the detection of a clinical biomarker (HER2-neu/ERBB2) related to breast cancer initiation/progression. Preparing regions for specific recognition of different proteins as well as a reference on the biochip enables to correct the signal for nonspecific effects. Additionally, label-free analysis and surface wave enhanced fluorescence detection can be applied and compared directly on the platform. Cell lysates with high and low expression levels of ERBB2 are analyzed. Comparing the signals of such ERBB2 positive and negative samples estimates the limit of detection at 1.7 ng/mL. This is well below the threshold of 15 ng/mL set by the FDA for clinically useful ERBB2 detection in human serum, demonstrating that 1DPC-based biochips are attractive candidates for breast cancer detection/monitoring.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.