Photon upconversion, a step toward laser cooling of solids, is an anti-Stokes process in which an absorption of a photon leads to a reemission of a photon at energy higher than the excitation energy. Here, we demonstrate room temperature upconversion photoluminescence process in a monolayer semiconductor WS2, with energy gain up to 150 meV. We attribute this process to transitions involving trions (T) and many phonons and free exciton complexes (X). We show that the energy gain significantly depends on the temperature. In order to gain insight into the temperature dependence of the mechanism of the upconverted emission, we combine the normal and upconverted photoluminescence of the monolayer WS2 at low, intermediate and high temperatures. At 7 K the energy gain of upconversion emission amounts about 40 meV, which is comparable with the energy difference between the X and T emission lines and also nearly resonates with the energy of one optical phonon (A’1 or E’). This suggests that at low temperature the upconversion process is related to the coupling between the T and X states mediated by one optical phonon. The higher energy gain of ~60 meV at 70 K suggests that more than one phonon is involved in the upconversion process.
To create carbon-based nanoscale integrated electronic, photonic, and spintronic circuit one must demonstrate the three functionalities in a single material, graphene quantum dots (GQDs), by engineering lateral size, shape, edges, number of layers and carrier density. We show theoretically that spatial confinement in GQDs opens an energy gap tunable from UV to THz, making GQDs equivalent to semiconductor nanoparticles. When connected to leads, GQDs act as single-electron transistors. The energy gap and absorption spectrum can be tuned from UV to THz by size and edge engineering and by external electric and magnetic fields. The sublattice engineering in, e.g., triangular graphene quantum dots (TGQDs) with zigzag edges generates a finite magnetic moment. The magnetic moment can be controlled by charging, electrical field, and photons. Addition of a single electron to the charge-neutral system destroys the ferromagnetic order, which can be restored by absorption of a photon. This allows for an efficient spin-photon conversion. These results show that graphene quantum dots have potential to fulfill the three functionalities: electronic, photonic, and spintronic, realized with different materials in current integrated circuits, as well as offer new functionalities unique to graphene.
Dan Dalacu, Khaled Mnaymneh, Vera Sazonova, Philip Poole, Geof Aers, Ross Cheriton, Mike Reimer, Jean Lapointe, Pawel Hawrylak, Marek Korkusiński, Eugene Kadantsev, Robin Williams
Optoelectronic devices based on single, self-assembled semiconductor quantum dots are attractive for applications
in secure optical communications, quantum computation and sensing. In this paper we show how it is possible
to dictate the nucleation site of individual InAs/InP quantum dots using a directed self-assembly process, to
control the electronic structure of the nucleated dots and also how to control their coupling to the optical field by
locating them within the high field region of a photonic crystal nanocavity. For application within fiber networks,
these quantum dots are targeted to emit in the spectral region around 1550 nm.
The dephasing time in semiconductor quantum dots and quantum-dot molecules is measured using a sensitive four-wave mixing heterodyne technique. We find a dephasing time of several hundred picoseconds at low temperature in the ground-state transition of strongly-confined InGaAs quantum dots, approaching the radiative-lifetime limit. Between 7 K and 100 K the polarization decay has two distinct components resulting in a non-Lorentzian lineshape with a zero-phonon line and a broad band from elastic exciton-acoustic phonon interactions. On a series of InAs/GaAs quantum-dot molecules having different interdot barrier thicknesses a systematic dependence of the dephasing dynamics on the barrier thickness is observed. The results show how the quantum mechanical coupling of the electronic wavefunctions in the molecules affects both the exciton radiative lifetime and the exciton-acoustic phonon interaction.
Currently there is strong interest in realizing implementations of quantum computation and quantum cryptography in a solid state environment. One of the systems that are actively studied are semiconductor quantum dots (QDs). Due to their discrete energy level structure, they are often called artificial atoms, and they attract immediately interest of quantum information science since they allow to mimic the design developed for atomic physics systems such as ions in traps or atoms in cavities. However, despite of the similarities, one has to keep in main that any elementary excitation in a QD has a generic many-body character. An essential building block of a quantum processor is a quantum gate which entangles the states of two quantum bits. Recently it has been proposed that a pair of vertically aligned QDs could be used as an optically driven quantum gate: The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin," therefore we term them "isospin." Quantum mechanical tunneling between the dots rotates the "isospin" and leads to superposition of two quantum dot states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. The entanglement can be controlled by application of an electric field along the heterostructure growth direction. Here we present spectroscopic studies on single quantum dot molecules (QDMs) with different vertical separation between the dots that support the feasibility of this proposal. The comparison of the evolution of the excitonic recombination spectrum with the results of calculations allows us to demonstrate coherent tunneling of electrons and holes across the separating barrier and the formation of entangled exciton states. For a given barrier width, we find only small variations of the tunneling induced splitting between the entangled states demonstrating a good homogeneity within the obtained QDM ensembles.
Self-assembled AI36Ino.As/AIo33Gao.67As quantum dots have been studied by single dot photoluminescence
spectroscopy at T= 1.5 K. Emission from the biexciton state is observed, for which we find a binding energy of 5 meV, also,
larger multi-exciton complexes are observed at higher excitation intensities. These artificial atoms are found to have an
intersublevel spacing of7O meV. In magnetic field, we observe Zeeman splitting ofthe exciton and biexciton spectral lines.
From a recent study of the growth and optical properties of quantum dots (QD's), we demonstrated that artificial atoms with sharp electronic shells can be fabricated with good control, using self-assembled QD's grown by molecular beam epitaxy. Size and shape engineering of the QD's during growth permits the tailoring of their intersublevel energy spacings. We demonstrate a much improved uniformity of the macroscopic ensembles of QD's, with well-resolved electronic shells. In addition to size and shape engineering of the QDS's in the case of single-layer samples, we demonstrate significant improvements in the uniformity of the vertically self-aligned stacked QD's. State-filling spectroscopy of the zero-dimensional transitions between confined electrons and holes demonstrates that the energy levels are readily tunable. One to five confined levels, with an inter-level energy spacing between 25 and 90 meV, are obtained by adjusting the growth temperature or with post-growth annealings. Such QD's having well-defined excited-states have been grown in the active region of devices and results will be presented for lasers, detectors, or for structures displaying optical memory effects. For example, QD laser diodes with well-defined electronic shells are fabricated, and shape-engineered stacks of self-aligned QD's are used to increase the gain in the active region. Lasing is observed in the upper QD shells for small gain media, and progresses towards the QD ground states for longer cavity lengths. We obtained at 77K thresholds for Jth=15 A/cm2 for a 2 mm cavity lasing in the first excited state (p-shell), and at 300K for a 5 mm cavity, Jth is ~430A/cm2 with lasing in the d-shell. For an increased QD density, Jth is smaller than 100A/cm2 at room temperature. For inter- sublevel transitions, we demonstrated broadband normal incidence detection with responsivity approaching 1A/W at a detection wavelength of 5 microns. For interband detection, the photoluminescence decay time of p-i-n diode can be changed from ~3nsec to ~0.3nsec (3Ghz) with a reverse bias. For Qds capped with less than ~10 nm, remarkable charge transfers between QD and surface states lead to optical memory effects lasting over time-scales of several minutes.
The photoluminescence (PL) and photoluminescence excitation (PLE) spectra of a GaAs/AlGaAs doublebarrier
resonant tunnelling diode have been studied with sub-meV resolution as a function of the applied
bias voltage. For voltages which bias the device in the resonant tunnelling regime, a monotonic blue shift
of the PLE peak is observed, concomitant with a monotonic red shift of the corresponding PL peak. Over
the same range of voltages, the linewidth (FWHM) increases from 4.8 to 6.3 meV in the case of the PL
and from 3.6 to 8.7 meV in the case of the PLE. These results are interpreted as representing the
influence of the resonantly accumulated electron population in the well region on the heavy hole exciton
resonance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.