Fraunhofer HHI’s hybrid photonic integration technology based on SiN and polymer waveguiding platforms enables photonic integrated circuits operating at wavelengths from the infrared down to the visible. Hybrid photonic integration processes allow integrating active photonic building blocks such as lasers and active sections, as well as non-reciprocal and non-linear functionalities. Those features prove the large potential of Fraunhofer HHI’s hybrid photonic integration technology in application domains such as sensing and quantum technologies.
A photonic engine for the integration of multi-lane optical transceivers is presented. The building blocks are InP-based electro-absorption modulated lasers and photodiodes capable of operating at 50 GBaud with PAM-4 modulation, and a low-cost polymer waveguiding chip providing routing of the multiple lanes and connectivity towards standard single-mode fibers. An automatic process for the hybrid assembly of the different building blocks has been developed, and photonic integrated circuits with up to 16 lanes have been demonstrated. Furthermore, high-frequency flexible interconnects with bandwidths beyond 100 GHz provide a connectivity solution between photonics and high-speed electronics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.