In this work, we present a computer-aided diagnosis system that uses deep learning and decision fusion to classify patients into one of three classes: “Likely Prostate Cancer," “Equivocal" and “Likely not Prostate Cancer." We impose the group “Equivocal" to reduce misclassifications by allowing for uncertainty, akin to prostate imaging reporting systems used by radiologists. We trained 3D convolutional neural networks to perform two binary patient-level classification tasks: classification of patients with/without prostate cancer and classification of patients with/without clinically significant prostate cancer. Networks were trained separately using volumetric T2-weighted images and apparent diffusion coefficient maps for both tasks. The probabilistic outputs of the resulting four trained networks were combined using majority voting followed by the max operator to classify patients into one of the three classes mentioned above. All networks were trained using patient-level labels only, which is a key advantage of our system since voxel-level tumour annotation is often unavailable due to the time and effort required of a radiologist. Our system was evaluated by retrospective analysis on a previously collected trial dataset. At a higher sensitivity setting, our system achieved 0.97 sensitivity and 0.31 specificity compared to an experienced radiologist who achieved 0.99 sensitivity and 0.12 specificity. At a lower sensitivity setting, our system achieved 0.78 sensitivity and 0.77 specificity compared to 0.76 sensitivity and 0.77 specificity for the experienced radiologist. We envision our system acting as a second reader in pre-biopsy screening applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.