In view of the problem that various fused silica materials have different characteristics, which could cause differences in processability, the mechanical properties of fused silica materials were studied through nanoindentation experiments. Relationship curves between indentation load and material hardness/elastic modulus were obtained for different fused silica optics. The fracture characteristics of fused silica materials were also studied using the gradient force imprinting method, and the fracture toughness and critical load of crack generation were calculated for different fused silica materials. The ability of different fused silica materials to resist crack instability prop agation under the same process conditions was also clarified. Furthermore, the polishing removal characteristics of fused silica materials were researched, and the polishing removal efficiency of different materials was obtained through the magnetorheologi cal finishing (MRF) spotting method. It was further verified that the hardness was positively correlated with the material polishing removal efficiency. Based on the characteristics of different fused silica materials, the optical ultra -precision processing parameters could be selected. This is of great significance for low -defect and high-efficiency ultra-precision machining of optics.
Aiming at the problem of on-line real-time monitoring of grinding wheel wear state in ultra-precision grinding, the wear experimental research of fused silica optics is carried out by using acoustic emission technology. The grinding wheel wear state is determined according to the micro morphology of grinding wheel surface. On this basis, the variation law of acoustic emission signal with grinding wheel wear state is revealed, and the quantitative relationship between the root mean square value of acoustic emission signal, grinding force grinding, wheel spindle power and grinding wheel wear state is built. The wavelet packet transform is used to decompose the acoustic emission signal, studying the variation law of root mean square value of acoustic emission signal in different frequency bands under different grinding wheel wear, taking it as the feature of grinding wheel wear, and obtaining the early warning threshold for grinding wheel wear passivation according to the micro morphology of grinding wheel surface. It’s helpful to monitor and control the wear state of diamond grinding wheel in the grinding process of optics through the analysis of acoustic emission signal, so as to improve the grinding efficiency and quality of optics.
In order to improve the grinding quality and efficiency of SiC elements, the influence of grinding parameters on the grinding quality was studied by using 2MK1760 ultra-precision surface grinder. Based on the surface roughness and surface precision, the relationship between grinding volume and grinding force of metal bonded and resin bonded diamond grinding wheels was researched, and it was obtained that the metal bonded grinding wheels could maintain enough sharpness during a large amount of grinding removal. The grinding force was used to characterize the grinding wheel wear, and through experiments studied the relationship between grinding parameters (including grinding depth) and the SiC material removal volume after grinding wheel one-time dressing. The results showed that different grinding depth will not affect the grinding wheel life under the same other conditions. On the basis of technological experiments, aiming at optimizing grinding efficiency and quality, resin bonded plane grinding wheel was used to grind SiC elements with three diameters of 75mm, 150mm and 320mm, and very small surface precision (PV=3.758μm) and surface roughness (RMS=35.472nm) could be obtained.
Small scale waviness of aspheric surface inevitably occurs when grinding aspheric surface with grating parallel grinding technology, so aiming at the problem of waviness amplitude and uniformity, this paper theoretically analyses the relationship between grinding processing parameters and aspheric waviness, and designs a single factor experiment to verify the influence of grinding processing parameters on aspheric surface waviness. The processing parameters are determined to minimize the waviness amplitude. Considering the problem of uniformity of waviness, according to the influence of grinding force on uniformity of aspheric waviness in grinding process, down-grinding grating parallel grinding method and up-grinding grating parallel grinding method are used. Experiments verify that down-grinding grating parallel grinding method is the best method to get most uniformity small-scale waviness of aspheric surface. The minimum amplitude is 0.5μm~1.5μm.
Thanks to the advantages of improving the focusing precision and reducing the energy loss in the beam focusing, complex and off-axis aspheric mirrors are widely used in the field of aviation, aerospace, national defense and other large optical systems. Ultra-precision grinding is an important technology to manufacturing large aperture aspheric optics in enormous quantities. In order to fabricate large aperture aspheric optics high efficiently and precisely, several key technologies when parallel grinding were proposed in this article. First, the computer aided programming system was developed, which could compute the coordinates of aspheric surface and diamond wheel when grinding and generate the CNC programs automatically, which can be directly executed by the grinder. On the premise of waviness controlling, the raster grinding trajectory was optimized to improve the material removal efficiency. To acquire the radius and form error of diamond wheel, the measurement of diamond wheel based on corkscrew spin trajectory was proposed, which could detect the 3-D geometric morphology of wheel. By precision tool setting using displacement sensor, the definitive position between wheel and element was established, which avoided the error correction in subsequent grinding process. Through on-machine measurement using non-contact displacement sensor, the 3-D form error of optics was acquired, which was combined with the theoretical coordinates of aspheric to compensation grinding. In the end the grinding experiment was carried out. The material removal rate of rough grinding, semi-fine grinding and fine grinding were about 520mm3/s, 26 mm3/s and 1.6 mm3/s, respectively. The P-V of form error after fine grinding was about 3.21μm. The destination of highly active and ultra-precision grinding of large aperture and complex aspheric lens was achieved.
As the advantages of high forming accuracy, fast material removal efficiency and slight machining defects, the ultraprecision grinding using micro-powder diamond wheel has been widely applied to the processing of large aperture and complex surface optical elements. Due to the brittleness and hardness of optical materials, micro-powder diamond wheel is easy to wear during grinding process, which affects the surface roughness and depth of sub-surface damage layer of components. In order to accurately characterize the wear state of diamond wheel in the grinding process, a method based on in-situ micro-observation of grinding wheel and abrasive particle image contour recognition was proposed to detect the diamond wheel. First, based on the grinding experiments, the surface micromorphology of grinding wheel was acquired by in-situ microscopic observation, and the wear forms of the grinding wheel were analyzed. Then the average distribution density of wear particles and average wear area were taken as the evaluation parameters of the wear state of the wheel. After outstanding the edge profile of abrasive particles by Laplacian enhancement operator and binary processing, the edge profiles of wear particles were extracted out. And by calculating the number and projection area of each wear abrasive particles, the average distribution density of wear particles and the average wear area in the measured region on the surface of grinding wheel were obtained. At the end, the wear state of resin bonded diamond grinding wheel used for grinding fused silica optics was tested. The experimental results showed that the diamond wheel states of initial wear stage and steady wear stage were accurately identified by the parameters of distribution density of wear abrasive particles and average wear area.
Aiming at the disadvantage of small diameter, low efficiency, poor accuracy and can only measure sub-aperture of traditional contact surface shape measurement method to detect grinding optics surface, this paper uses non-contact laser displacement sensor, and proposes an in-situ measurement method to measure full-aperture surface of grinding optics, it has the characteristics of high measurement efficiency, high accuracy, large measurement aperture and the ability to measure full-aperture surface. This method is in-situ measurement, so it can measure full-aperture surface of optics with arbitrary aperture and shape after rough grinding, semi-precision grinding and fine grinding. Orthogonal co-directional grating measurement path can effectively avoid the influence of machine backlash. Therefore, the optics can be directly compensated according to the results of surface measurement, so that the surface of optics can meet the requirements. After the measurement is completed, a set of orthogonal measurement data are obtained, and the invalid data are manually clipped. Linear interpolation, nearest neighbor interpolation and cubic spline interpolation are used to interpolate the clipped data, and the orthogonal data are superimposed to obtain the final shape. The validity of this method is verified by the sub-aperture surface detection method, experiments show that the optimal surface measurement results can be obtained by cubic interpolation for both planar and aspheric optics. Using this method to compensate the grinding of 530mm×530mm 2-D off-axis aspheric optics, the full-aperture surface shape accuracy PV is better than 3.5μm.
Aiming at the problem of poor uniformity and large amplitude of aspherical small-scale waviness caused by grinding aspheric surface by traditional grating parallel grinding technology, in this paper, the reasons for the poor uniformity of aspherical small-scale waviness in traditional grating parallel grinding technology are analyzed from the perspective of grinding force. Considering the influence of the uniformity of the grinding force during the grinding process on the aspherical small-scale waviness, an up-grinding grating parallel grinding method and a down-grinding grating parallel grinding method are proposed. The effects of the grinding force of the two grinding methods on the aspherical small-scale waviness uniformity are analyzed experimentally. Finally, among these three grating parallel grinding methods, the aspherical small-scale waviness obtained by the down-grinding grating parallel grinding method is the most uniform and the waviness amplitude is the smallest, the waviness amplitude is less than 2μm.
For the purpose of ultra-precision grinding large scale and complex off-axis aspheric optics effectively and automatically, computer-aided NC programming system was developed in this article. First the mathematical model of aspheric parallel grinding was analyzed, and the manufacture process of aspheric grinding is designed. Then the system architecture was established, which included initial grinding module, on-machine measuring module and error compensation grinding module. After inputting process and aspheric parameters, the system could calculate the grinding wheel X/Z/Y coordinates precisely and simulate the grinding pathway automatically, and then create grinding CNC program, which could control the grinding wheel to move along the aspheric surface. And the on-machine measurement CNC program was created to acquire the form error by displacement sensor. By combining the form error with the aspheric surface coordinates, the grinding wheel coordinates could be calculated and compensation machining CNC program was created. Using this system to manufacturing one large scale and off-axis aspheric optics, the PV of final form error was below 3.0μm, and the RMS was below 0.5μm.
The flatness and parallelism error of large scale and ultra thin optics have an important influence on the subsequent polishing efficiency and accuracy. In order to realize the high precision grinding of those ductile elements, the low deformation vacuum chuck was designed first, which was used for clamping the optics with high supporting rigidity in the full aperture. Then the optics was planar grinded under vacuum adsorption. After machining, the vacuum system was turned off. The form error of optics was on-machine measured using displacement sensor after elastic restitution. The flatness would be convergenced with high accuracy by compensation machining, whose trajectories were integrated with the measurement result. For purpose of getting high parallelism, the optics was turned over and compensation grinded using the form error of vacuum chuck. Finally, the grinding experiment of large scale and ultra thin fused silica optics with aperture of 430mm×430mm×10mm was performed. The best P-V flatness of optics was below 3 μm, and parallelism was below 3 ″. This machining technique has applied in batch grinding of large scale and ultra thin optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.