The objective of this study is to characterize the quantum efficiency of a digital x-ray imaging system. This system is designed for small animal experiments. It is equipped with an x-ray tube with a Be-filtered tungsten target, 0.02 mm focal spot and 0.3 mA operating current. The fiber optically coupled CCD module, through a scintillating screen, covers a field of 5 cm 10 cm, at 1024 2048 pixel format. To analyze the impact of x-ray photon flux and CCD electronic noise to the quantum efficiency of the system, the noise power spectrum (NPS) and detective quantum efficiency (DQE) were measured as a function of x-ray exposure and detector integration time. A BR-12 phantom was placed between the x-ray tube and the detector during measurements. The results showed consistent DQE when exposure/integration is in the range of 2 to 7 seconds (for a 0.5cm thick phantom), and 3 to 15 seconds (for a 2cm thick phantom). With a 0.5cm phantom, DQE are approximately 36.7%, 25% and 5.4% at frequencies of 0 lp/mm, 3 lp/mm and 8 lp/mm respectively. With a 2 cm BR-12 slab, hardened x-ray beam at 26 KVp doesn’t have much impact on DQE, approximately 36.2%, 27.3% and 6% for 0 lp/mm, 3 lp/mm and 8 lp/mm frequencies. In summary, the CCD based digital x-ray imaging system investigated in this study is an efficient, x-ray quantum noise limited system for small animal experiments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.