An important advantage of MCT based detectors is the tunable band gap. The spectral sensitivity of MCT detectors can be engineered to cover the extended SWIR spectral region up to 2.5μm without compromising in performance.
AIM developed and released the technology option to extend the spectral sensitivity of its SWIR modules also into the VIS. This has been successfully demonstrated for different FPA designs. A short overview is given in tis paper.
AIM has qualified this VIS technology option based on a 1024x256 FPA capable for extended hyperspectral applications. Within this paper the test approach and the results will be presented.
Now, AIM has realized first prototypes of an ultra-compact high-performance MWIR engine in a total volume of only 18cl (60mm length x 60mm height x 50mm width). Impressive SWaP characteristics are completed by a total weight below 400g and a power consumption < 4W in basic imaging mode. The engine consists of a XGA-format (1024x768) MCT detector array with 10μm pitch and a low power consuming ROIC. It is cooled down to a typical operating temperature of ~160K by the miniature linear cryocooler SX020. The dewar uses a short coldfinger and is designed to reduce the heat load as much as possible. The cooler drive electronics is implemented in the CCE layout in order to reduce the required space of the printed boards and to save power. Uncorrected 14bit video data is provided via Camera Link. Optionally, a small image processing board can be stacked on top of the CCE to gain access to basic functions such as BPR, 2- point NUC and dynamic reduction. This paper will present the design, functionalities and performance data of the ultra-compact MCT MWIR engine operated at HOT.
From AIM´s line of highest-performance single color detectors fabricated by LPE, we will present our latest excellent results of 5.3 μm cut-off MWIR MCT detectors with 1024x768 pixels and a 10 μm pixel pitch. AIM’s powerful low dark current LWIR and VLWIR p-on-n device technology on LPE-grown MCT has now been extended to the MWIR spectral range. A comparison of results from n-on-p and p-on-n MWIR MCT planar photodiode arrays is presented. Operating temperatures of 160 K and higher, in conjunction with low defect density and excellent thermal sensitivity (NETD) are attained. The results achieved for LPE MWIR are compared to MBE MWIR data.
For both the cost-efficient production of MWIR single color MCT detectors, as well as 3rd generation multicolor MCT detectors, AIM makes use of MBE growth of MCT on large-area GaAs substrates. The now-available AIM MWIR single color MBE MCT detectors grown on GaAs are qualified, delivered, and have reached a maturity fully meeting customers’ requirements. Representing AIM’s multicolor detector development, latest test results on a 640x512 pixels with a 20 μm pitch design will be presented. The MWIR/MWIR diodes demonstrate high QE, very low color cross talk, and excellent NETD in conjunction with low defect densities.
Thermal imagers based on cooled LWIR Modules are the choice for many Army applications in battlefield conditions like e.g. Gunner and Commander Sights in armored vehicles or Pilotage and Targeting Sights for helicopters. AIM has developed and produces LWIR FPAs based on liquid phase epitaxy (LPE) grown MCT on in-house grown CdZnTe substrates with different formats up to detector arrays with 1280x1024 elements in a 15μm pitch. LWIR detector arrays with different spectral cut-off wavelengths in the range of 9μm up to >12μm have been produced and characterized. For cost reduction a fabrication of molecular beam epitaxy (MBE) grown MCT on GaAs substrates is developed.
Critical performance parameters of the detector arrays are temporal noise at low frequencies and the residual fixed pattern noise after non-uniformity correction. A performance-limiting factor of a LWIR FPA is also the available full well capacity (FWC) of the readout integrated circuit (ROIC) for signal integration. AIM has done a redesign of the standard 640x512, 15μm pitch ROIC using now 0.18μm Si-CMOS technology. The available FWC for signal integration could be significantly increased resulting in better NETD performance.
Further developments are done for pitch reduction to realize LWIR modules also with 12μm and 10μm pixel pitch. The FPAs are integrated in compact dewar cooler configurations using different kinds of cooler types, like AIM’s split linear coolers SX095 or SX040 or rotary integral types depending whatever fits best to the application. The paper will present the development status and performance results of AIM’s latest improved MCT LWIR Modules.
View contact details