Recent discovery of the coherent lasing from various disordered materials adds a new dimension to the conventional physics of light propagation in multiply scattering media. It suggests that in the situation, when the propagation of light is diffusive on average, the coherent feedback can be provided by the sparse disorder configurations that efficiently trap a photon, and thus, serve as random resonators. This scenario of random resonators has been
substantiated experimentally by the ensemble averaging of the power Fourier transforms of the random emission spectra. In this paper the current status of the experiment and theory of coherent random lasing is reviewed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.