We show the fabrication of a novel optofluidic chip that uses a a network of nanochannels optimized for the transport of DNA-stretched molecules. The molecules can move through the nanochannels in the femto-liter per second. The nanochannels are optically accessible via a transparent cover of pyrex, allowing fluorescence microscopy imaging of the travelling molecules. The nanochannels are surrounded by photonic crystal structures to enhance the emission of the fluorescent light. The photonic crystal structures provide an enhancement up to 2.5 times in the light emitted by fluorescent molecules in motion inside the nanochannels which increases to around 250 when normalized to the area of the nanochannels emitting fluorescence. The results may help to the detection of fluorescent molecules (like marked-DNA) in series by speeding it or allowing the use of less sophisticated equipment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.