Radiation detector capable of discriminating between different species of high energy ions is of great demand by aerospace and high energy physics communities. We propose the optical fiber-based real time ion detector and discriminator, which can have long lifetime in radiation environment, can be compact and low production cost. The basis of detector's principle of operation is the strong dependence of the pattern of energy dissipation with ion penetration depth in the matter on the type of the ion. Another key phenomenon enabling our fiber optic based detector is the refractive index change in optical fiber in the vicinity of particle track due to the dissipated energy. These two effects provide the opportunity to measure the energy dissipation versus penetration depth as well as total energy released simultaneously in real time with a single detector. Thus, different types of ions can be distinguished by measuring total energy dissipated and energy dissipation versus distance. To discriminate between ions species we propose to use measurement of the Bragg peak position. Total energy dissipated by the particle in the detector material and determination of the Bragg peak position gives the full information on the kind of the incident ion as confirmed via simulations.
Fiber optic pressure sensors were integrated into the grinding plates of an operational paper pulp mill for real-time monitoring of the pulp grinding process. On-line system monitoring will allow smart, active control of the grinding plates thereby improving the quality and consistency of the pulp produced. Sensors were constructed and calibrated for use in the harsh environment of an operating paper pulp grinder. The sensors were 1.65mm in diameter including titanium housing, and were installed directly into the grooves of the grinding plates. The sensing elements were flush-mounted with the wall and exposed to the wood pulp slurry. Nine sensors were calibrated up to 1000psi. During operation, pressure was sampled at 1.0MHz, and pressure spikes up to 175psi were observed. Pressure pulses measured are due to the relative motion between the grooves and channels on two pulp grinding plates. The consistency, size distribution, and quality of paper pulp exiting from the grinder are directly related to the distance between the channels on the two rotating elements. The pressure pulses produced are also proportional to the distance between channels. Therefore, by monitoring pressure fluctuations, grinding elements can be dynamically controlled thereby producing a "smart mill."
The objective of the work presented was to develop a suite of sensors for use in high-temperature aerospace environments, including turbine engine monitoring, hypersonic vehicle skin friction measurements, and support ground and flight test operations. A fiber optic sensor platform was used to construct the sensor suite. Successful laboratory demonstrations include calibration of pressure sensors to 500psi at a gas temperature of 800°C. Additionally, pressure sensors were demonstrated at 800°C in combination with a high-speed (1.0MHz) fiber optic readout system enabling previously unobtainable dynamic measurements at high-temperatures. Temperature sensors have been field tested up to 1400°C and as low as -195°C. The key advancement that enabled the operation of these novel harsh environment sensors was a fiber optic packaging methodology that allowed the coupling of alumina and sapphire transducer components, optical fiber, and high-temperature alloy housing materials. The basic operation of the sensors and early experimental results are presented. Each of the sensors described here represent a quantifiable advancement in the state of the art in high-temperature physical sensors and will have a significant impact on the aerospace propulsion instrumentation industry.
The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber Bragg grating (FBG) sensors for the SAFE-100 non-nuclear core simulator. The purpose of the combined temperature and strain mapping was to obtain a correlation between power distribution and core shape within the simulator. In a nuclear reactor, core dimension affects local reactivity and therefore power distribution. 20 FBG temperature sensors were installed in the SAFE-100 thermal simulator at the NASA Marshal Space Flight Center in an interstitial location approximately 2.3mm in diameter. The simulator was heated during two separate experiments using graphite resistive heating elements. The first experiment reached a maximum temperature of approximately 800°C, while the second experiment reached 1150°C. A detailed profile of temperature vs. time and location within the simulator was generated. During a second test, highly distributed fiber Bragg grating strain sensors were arrayed about the circumference and along the length of the heated core region. The maximum temperature during this test was approximately 300°C. A radial and longitudinal strain distribution was obtained that correlated well with known power distribution. Work continues to increase the strain sensor operating temperature and sensor multiplexing to allow high-resolution mapping.
The objective of the work presented was to develop a suite of sensors for use in high-temperature aerospace environments, including turbine engine monitoring, hypersonic vehicle skin friction measurements, and support ground and flight test operations. A fiber optic sensor platform was used to construct the sensor suite. Successful laboratory demonstrations include calibration of a pressure sensor to 100psi at a gas temperature of 800°C, calibration of an accelerometer to 2.5g at a substrate temperature of 850°C. Temperature sensors have been field tested up to 1400°C, and a skin friction sensor designed for 870°C operation has been constructed. The key advancement that enabled the operation of these novel harsh environment sensors was a fiber optic packaging methodology that allowed the coupling of alumina and sapphire transducer components, optical fiber, and high-temperature alloy housing materials. The basic operation of the sensors and early experimental results are presented. Each of the sensors described here represent a quantifiable advancement in the state of the art in high-temperature physical sensors and will have a significant impact on the aerospace propulsion instrumentation industry.
Fiber optic measurement systems are on the cutting edge of instrumentation for many industries from military and government applications to commercial needs such as the automotive, aerospace, and power turbine industries. Measurement parameters including temperature, pressure, and strain can provide valuable information. Sensor mapping allows for larger scale monitoring capabilities and provide flexibility in sensing applications. A sensor and readout system is being developed to expand the capabilities of fiber optic sensing. Several iterations of multiplexed sensors have been tested using a high-resolution fiber optic coupled dual Michelson interferometer based-instrument that has the capability of reading gaps of 25μm to 6.5mm. This measurement range opened the opportunity to read several different sensors on the same fiber, i.e. the same channel. Sensor strings combining temperature and strain
extrinsic Fabry-Perot interferometric sensors were tested. These sensor strings produced were either serial multiplexed, parallel multiplexed, or a combination. This paper will discuss the capabilities of the sensors and instrumentation systems developed.
Luna Innovations is developing a high temperature sensor suite based on novel metal oxide transducers and patented fiber optic sensor technology. This suite will include pressure, temperature, acceleration, and skin friction sensors. Luna has demonstrated prototype ceramic fiber optic pressure sensors with a range of 2000 psig and +/- 0.1 psig absolute accuracy and 0.01 psig dynamic resolution. By applying advanced materials and packaging technologies, designs that will support pressure measurements up to 1400°C have been produced. Fiber optic temperature sensors have been tested up to 1100°C. A ceramic accelerometer has also been developed that will enable high-temperature vibration measurements. A shear stress sensor is in the early stages of development that is expected to reach 850°C. The high temperature sensor suite will provide previously unobtainable measurements in advanced air-breathing propulsion systems, as well as in high-temperature industrial applications.
Luna Innovations has developed a prototype 8-channel fiber optic sensor system to demonstrate fiber optic sensor operation in flight environments. As an intial flight demonstration, long period grating (LPG) relative humidity sensors along with extrinsic Fabry-Perot interferometric (EFPI) pressure and temperature sensors were installed in an aging Delta 767-300ER jet. The fiber optic signal-conditioning system is a multi-purpose platform that can also be used to operate other types of fiber optic LPG and EFPI sensors, including strain gages, metal-ion corrosion sensors, and fiber Bragg grating (FBG) sensors. The system configuration and operation is described.
Acquiring accurate, transient measurements in harsh environments has always pushed the limits of available measurement technology. Until recently, the technology to directly measure certain properties in extremely high temperature environments has not existed. Advancements in optical measurement technology have led to the development of measurement techniques for pressure, temperature, acceleration, skin friction, etc. using extrinsic Fabry-Perot interferometry (EFPI). The basic operating principle behind EFPI enables the development of sensors that can operate in the harsh conditions associated with turbine engines, high-speed combustors, and other aerospace propulsion applications where the flow environment is dominated by high frequency pressure and temperature variations caused by combustion instabilities, blade-row interactions, and unsteady aerodynamic phenomena. Using micromachining technology, these sensors are quite small and therefore ideal for applications where restricted space or minimal measurement interference is a consideration. In order to help demonstrate the general functionality of this measurement technology, sensors and signal processing electronics currently under development by Luna Innovations were used to acquire point measurements during testing of a transonic fan in the Compressor Research Facility (CRF) at the Turbine Engine Research Center (TERC), WPAFB. Acquiring pressure measurements at the surface of the casing wall provides data that are useful in understanding the effects of pressure fluctuations on the operation and lifetime wear of a fan. This measurement technique is useful in both test rig applications and in operating engines where lifetime wear characterization is important. The measurements acquired during this test also assisted in the continuing development of this technology for higher temperature environments by providing proof-of-concept data for sensors based on advanced microfabrication and optical techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.