In this paper, we develop and demonstrate a nondestructive evaluation technique for corrosion detection of embedded or encased steel cables. This technique utilizes time domain reflectometry (TDR), which has been traditionally used to detect electrical discontinuities in transmission lines. By applying a sensor wire along with the bridge cable, we can model the cable as an asymmetric, twin-conductor transmission line. Physical defects of the bridge cable will change the electromagnetic properties of the line and can be detected by TDR. Furthermore, different types of defects can be modeled analytically, and identified using TDR. TDR measurement results from several fabricated bridge cable sections with built-in defects are reported.
We will present high quality In0.53Ga0.47As which has been grown on semi- insulating (100) InP:Fe substrates by rare earth doped (Yb, Gd, and Er) liquid phase epitaxy using a graphite boat. The new earth ions, which are highly reactive, are thought to better impurities like O, C, and Si by reacting with these impurities and precipitating out in the melt, but not incorporating into the epitaxial layer to any significant amount.
The concept of double-beam modulation (DBM) has been demonstrate using SWAOM, SWSAWM, and DMB frequency-locked lasers (DBM-FLL). The concept and characteristics of DBM are reviewed, and some initial experiments to demonstrate the concept of DMB-FLL are described. DBM technologies for space communications are briefly addressed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.