This paper introduces a defect tolerant 64-bit Sklansky prefix adder, designed with the goal of increasing its
reliability and extending its lifetime in the presence of hard faults. We consider defect tolerance for early
transistor wear-out by exploring the design of fine-grained reconfigurable logic. The approach involves enabling
spare processing elements to replace defective elements. Power gating techniques are used to disable faulty logic
blocks and enable spare logic. Minimum sized transistors are used for spare processing elements to reduce area
overhead, and simplify reconfiguration interconnect.
The performance of the design is compared to a baseline, non-repairing design using the cost metrics of: area
overhead, power consumption, and performance in the fault free and faulty case.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.