KEYWORDS: Signal to noise ratio, Plasmonic sensors, Surface plasmons, Design and modelling, Reflectivity, Thin films, Sensors, Material characterization
Materials characterization is essential since it is the basis for understanding materials’ physical and chemical properties before being used in any application. Nowadays, expensive equipment such as scanning electron microscopy and X-ray diffraction for thin film characterization at atomic layers are used. Atomic layer deposition (ALD) is a technique for growing thin films with a wide range of applications. The film thickness range is usually 1-500 nm. Plasmonic sensors are a low-cost technique for material characterization, including inorganic and organic thin films. The thickness resolution ranges from a fraction of a nanometer (monolayers) to several micrometers. These devices exploit the interaction of light with matter using surface plasmon resonance as a method based on the optoelectronic phenomenon. Kretschmann geometry continues to be a configuration widely used as an experimental setup to excite surface plasmon resonance in the characterization of different materials. It consists of a coupler prism with a thin metal film. The incident light in the total internal reflection at a specific angle, the evanescent wave transfers the energy to the electrons plasma of metal giving place surface plasmon resonance (SPR). The SPR effect in metals is highly sensitive to variations in the optical properties of the interface. We use the Kretschmann configuration and the matrix transfer method to analyze the performance numerically to achieve the optime parameters of design for the sensor’s performance. In this work, we developed a protocol to design and build a plasmonic sensor for the characterization of materials at the atomic layer level.
Wastewater quality monitoring is essential as an effective pandemic management tool. Domestic water is one of the leading causes of wastewater pollution. Domestic water originates from urban centers and contains substances from human activity consisting of organic matter such as food remains, feces, oils, detergents, and soaps. Different ways of sensing are used to maintain the water quality, like pH, conductivity, and turbidity sensors. Alternative methods are optical sensors because these offer great potential for wastewater monitoring, allowing massive, easy and low-cost acquisitions of a wide range of measures in real-time, at any flow conditions, and with high spatial resolution. Plasmonic sensors are optical sensors used for detection, which could realize rapid recognition, real-time analysis, and sensitive and selecting sensing. These devices exploit the interaction of light with matter using the SPR as a method based on the optoelectronic phenomenon. When light hits a metal surface (typically a gold surface) at a certain angle, part of the light energy pairs through the metal coating with the electrons in the metal surface layer, which then move due to excitation, called surface plasmon resonance. We use the Kretschmann configuration and the matrix transfer method to analyze the performance numerically to achieve the optime parameters of design for the sensor’s performance. In this work, we design and build a plasmonic sensor for house wastewater monitoring by tracking contaminants along a continuous flow of artisanal water.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.