Proceedings Article | 30 June 2006
Proc. SPIE. 6270, Observatory Operations: Strategies, Processes, and Systems
KEYWORDS: Observatories, Optical filters, Sensors, Calibration, Databases, X-rays, Interfaces, Quantum efficiency, Data archive systems, Magnetoencephalography
The calibration database implemented for the Chandra X-ray Observatory is the most detailed and extensive CalDB of
its kind to date. Built according to the NASA High Energy Astrophysics Science Archive Research Center (HEASARC)
CalDB prescription, the Chandra CalDB provides indexed, selectable calibration data for detector responses, mirror
effective areas, grating efficiencies, instrument geometries, default source aim points, CCD characteristics, and quantum
efficiencies, among many others. The combined index comprises approximately 500 entries. A standard FTOOLS
parametric interface allows users and tools to access the index. Unique dataset selection requires certain input
calibration parameters such as mission, instrument, detector, UTC date and time, and certain ranged parameter values.
The goals of the HEASARC CalDB design are (1) to separate software upgrades from calibration upgrades, (2) to allow
multi-mission use of analysis software (for missions with a compliant CalDB) and (3) to facilitate the use of multiple
software packages for the same data. While we have been able to meet the multivariate needs of Chandra with the
current CalDB implementation from HEASARC, certain requirements and desirable enhancements have been identified
that raise the prospect of a developmental rewrite of the CalDB system. The explicit goal is to meet Chandra's specific
needs better, but such upgrades may also provide significant advantages to CalDB planning for future missions. In
particular we believe we will introduce important features aiding in the development of mission-independent analysis
software. We report our current plans and progress.