A single shot, complete spatiotemporal measurement of the complex electric field E(x,y,z,t) emitted by a high power (>0.1 TW) laser is demonstrated for the first time. We generate movies of the laser's electric field E(x,y,z,t) before and after the chirped pulse amplification chain and examine the temporal, spectral, and spatial field features.
We report a recent experiment where the first hard x-ray beam line, X-ray Pump Probe (XPP) instrument using the
SLAC National Accelerator Laboratory's Linac Coherent Light Source (LCLS) free electron laser, was used to heat thin
foils to high energy densities ~ 107 J/cm3. An intense 9 keV, 60 fs (FWHM) duration beam with energy of 2 - 4 mJ at
the XPP beam line was focused using beryllium lenses to an irradiance approaching 1016 Wcm-2. Targets of 0.5 - 3.5 μm
thick foils of Ag and Cu were studied using a suite of diagnostics including Fourier Domain Interferometry, energy
calorimetry and grating and crystal spectrometers. The experimental details and spectroscopic results from the campaign
will be described. Preliminary results indicate that the target is heated relatively uniformly to a temperature lower than
20 eV.
We report on the x-ray absorption of Warm Dense Matter experiment at the FLASH Free Electron Laser (FEL) facility at DESY. The FEL beam is used to produce Warm Dense Matter with soft x-ray absorption as the probe of electronic structure. A multilayer-coated parabolic mirror focuses the FEL radiation, to spot sizes as small as 0.3μm in a ~15fs pulse of containing >1012 photons at 13.5 nm wavelength, onto a thin sample. Silicon photodiodes measure the transmitted and reflected beams, while spectroscopy provides detailed measurement of the temperature of the sample. The goal is to measure over a range of intensities approaching 1018 W/cm2. Experimental results will be presented along with theoretical calculations. A brief report on future FEL efforts will be given.
We present a review of recent development and applications of soft x-ray lasers, undertaken at the PALS Centre. The applications benefit from up to 10-mJ pulses at the wavelength of 21.2 nm. We describe the pumping regimes used to produce this soft x-ray laser, and outline its emission characteristics. A significant fraction of applications carried out using this device includes probing of dense plasmas produced by IR laser pulses and high-energy-density-in-matter experiments. Results obtained in these experiments are reviewed, including x-ray laser probing of dense plasmas, measurements of transmission of focused soft x-ray radiation at intensities of up to 1012 Wcm-2, measurements of IR laser ablation rates of thin foils, and probing high density plasmas by x-ray laser Thomson scattering
Recent experiments were carried out on the Prague Asterix Laser System (PALS) towards the
demonstration of a soft x-ray laser Thomson scattering diagnostic for a laser-produced exploding foil. The
Thomson probe utilized the Ne-like zinc x-ray laser which was
double-passed to deliver ~1 mJ of focused
energy at 21.2 nm wavelength and lasting ~100 ps. The plasma under study was heated single-sided using a
Gaussian 300-ps pulse of 438-nm light (3ω of the PALS iodine laser) at laser irradiances of 1013-1014 W
cm-2. Electron densities of
1020-1022 cm-3 and electron temperatures from 200 to 500 eV were probed at
0.5 or 1 ns after the peak of the heating pulse during the foil plasma expansion. A flat-field 1200 line mm-1
variable-spaced grating spectrometer with a cooled charge-coupled device readout viewed the plasma in the
forward direction at 30° with respect to the x-ray laser probe. We show results from plasmas generated
from ~1 μm thick targets of Al and polypropylene (C3H6). Numerical simulations of the Thomson
scattering cross-sections will be presented. These simulations show electron peaks in addition to a narrow
ion feature due to collective (incoherent) Thomson scattering. The electron features are shifted from the
frequency of the scattered radiation approximately by the electron plasma frequency ±ωpe and scale as ne1/2.
An ultra fast, sub-picosecond resolution streak camera has been recently developed at the LLNL. The camera is a versatile instrument with a wide operating wavelength range. The temporal resolution of up to 300 fs can be achieved, with routine operation at 500 fs. The streak camera has been operated in a wide wavelength range from IR to x-rays up to 2 keV. In this paper we briefly review the main design features that result in the unique properties of the streak camera and present its several scientific applications: (1) Streak camera characterization using a Michelson interferometer in visible range, (2) temporally resolved study of a transient x-ray laser at 14.7 nm, which enabled us to vary the x-ray laser pulse duration from ~2-6 ps by changing the pump laser parameters, and (3) an example of a time-resolved spectroscopy experiment with the streak camera.
X-ray spectra of a few picosecond duration were emitted by aluminum, selenium and samarium thin foils irradiated with a 100 TW, 300 fs laser at 0.53 μm wavelength. They were measured in the 1600 eV range with high temporal and spectral resolution, using a high-speed streak camera coupled to a conical Bragg crystal. Gradients were limited by using thin foils (300 to 800 Å) deposited on a 50 μm gold pinhole. Frequency Domain Interferometry was set to measure the velocity of the critical density at the rear of the target and deduce the electron temperature. A few picosecond duration X-ray spectra have been measured. Sm spectra showed no spectral features in the measured wavelength range, providing a spectrally homogeneous backlighter for absorption spectroscopy. The duration of the emission was shorter when observed through a pinhole. 1-D hydrodynamic simulations coupled to an atomic collisional-radiative code have been used to simulate the X-ray emission of aluminum. The main features of the experimental time resolved spectra, obtained for the pinhole target have been well reproduced, for an initial temperature of 700 ± 100 eV.
We present within this paper a series of experiments, which yield new observations to further our understanding of the transient collisional x-ray laser medium. We use the recently developed technique of picosecond x-ray laser interferometry to probe the plasma conditions in which the x-ray laser is generated and propagates. This yields two dimensional electron density maps of the plasma taken at different times relative to the peak of the 600ps plasma-forming beam. In another experimental campaign, the output of the x-ray laser plasma column is imaged with a spherical multilayer mirror onto a CCD camera to give a two-dimensional intensity map of the x-ray laser output. Near-field imaging gives insights into refraction, output intensity and spatial mode structure. Combining these images with the density maps gives an indication of the electron density at which the x-ray laser is being emitted at (yielding insights into the effect of density gradients on beam propagation). Experimental observations coupled with simulations predict that most effective coupling of laser pump energy occurs when the duration of the main heating pulse is comparable to the gain lifetime (~10ps for Ni-like schemes). This can increase the output intensity by more than an order of magnitude relative to the case were the same pumping energy is delivered within a shorter heating pulse duration (< 3ps). We have also conducted an experiment in which the output of the x-ray laser was imaged onto the entrance slit of a high temporal resolution streak camera. This effectively takes a one-dimensional slice of the x-ray laser spatial profile and sweeps it in time. Under some conditions we observe rapid movement of the x-ray laser (~ 3um/ps) towards the target surface.
Compact soft x-ray laser sources are now used routinely for various applications primarily because of their high repetition rate, high photon fluence and short pulse duration characteristics. For some of these applications, for example interferometry of high density laser-produced plasmas, longer optical drive pulses, 6 - 13 ps (FWHM), have been implemented to maximize the x-ray output and coherence. It is therefore important to know the x-ray laser pulse length, shape and repeatability for these specific experiments as a baseline measurement but also to better understand the temporal behavior as a function of the pumping conditions in general. We report a detailed temporal characterization of the picosecond-driven 14.7 nm Ni-like Pd ion x-ray laser on the Compact Multipulse Terawatt (COMET) laser at LLNL using an ultrafast x-ray streak camera measurement of a horizontal slice of the near-field x-ray laser pattern. This is measured as a function of the chirped pulse amplification pumping laser conditions, including varying the pump pulse from 0.5 - 27 ps (FWHM), varying the plasma column length as well as investigating traveling wave (TW) and non-TW irradiation conditions.
Ultra-short x-ray sources are generated by focusing sub- picosecond lasers on massive targets. The emission duration of a samarium x-ray source produced with a 100 TW sub- picosecond laser was measured using an ultra-fast X-ray streak camera. The spectral range was limited around 7.5-8.5 angstrom, the range in which samarium can be used as a backlighter for K(alpha) aluminum absorption experiments. The spectral time-evolution and the duration of samarium emission were measured. Preliminary calculations performed with non-local-thermodynamic equilibrium atomic physics show the plasma cooling which occurs with a characteristic time longer than predicted by radiative hydrocode simulations.
We describe recent experiments at the Lawrence Livermore National Laboratory (LLNL) to produce a table-top x-ray laser. Using a combination of long 800 ps and short approximately 1 ps high power laser pulses with approximately 6 J in each beam, a transient collisionally excited Ne-like ion x-ray laser scheme has been investigated. We present results of high x-ray laser gain for the Ne-like Ti 3p - 3s J equals 0 - 1 transition at 326 angstrom and have achieved gL product of 15 for target lengths up to 1 cm. We have extended the transient collisional scheme to shorter wavelengths using the Ni-like analog, specifically the 4d - 4p J equals 0 - 1 of Ni-like Pd at 147 angstrom.
The emission of ultrashort thermal x-ray radiation is shown to be controlled by two factors; peak temperature and the population of `cold' electrons. Two experiments are used to illustrate these mechanisms. The first measures the time history of 50 angstroms - 130 angstroms x-rays from ultrashort pulse laser heated solid targets. This experiment is used to illustrate the effect of the peak temperature on the full width at half maximum of the emission. The second experiment measures the dependency of decay time of the 1s2(S0) - 1s2p(1P1) transition (He(alpha )) emission on target thickness. This is used to infer the effects of unheated material or `cold' electrons on the time history of the x-ray emission.
Jean-Claude Gauthier, S. Bastiani, Patrick Audebert, Jean-Paul Geindre, K. Neuman, Tom Donnelly, M. Hoffer, Roger Falcone, Ronnie Shepherd, Dwight Price, William White
We have studied theoretically and experimentally the x-ray production above 1 keV from femtosecond laser plasmas generated on periodically modulated surface targets. Laser energy coupling to plasma surface waves has been modeled using a numerical differential method. Almost total absorption of incident laser radiation is predicted for optimized interaction conditions. Silicon gratings have been irradiated by a 120 fs Ti: sapphire laser at irradiances in excess of 1016W/cm2. X-ray intensities above 1.5 keV (K-shell lines) have been measured as a function of the incidence angle. Results show a distinct x-ray emission maximum for the first order diffraction angle and are in good qualitative agreement with our theoretical predictions.
The detection and temporal dispersion of the x rays using x ray streak cameras has been limited to a resolution of 2 ps, primarily due to the transit time dispersion of the electrons between the photocathode and the acceleration grid. The transit time spread of the electrons traveling from the photocathode to the acceleration grid is inversely proportional to the accelerating field. By increasing the field by a factor of 7, we have minimized the effects of transit time dispersion in the photocathode/accelerating grid region and produce an x-ray streak camera with sub-picosecond temporal resolution (approximately equals 900 fs). The streak camera has been calibrated using a Michelson interferometer and 100 fs, 400 nm laser light. Time resolved x-ray data is shown from an aluminum target heated at 1018 W/cm2 with a 100 fs, 400 nm laser.
The K-shell emission from porous aluminum targets is used to infer the density and temperature of plasmas created with 800 nm and 400 nm, 140 fs laser light. The laser beam is focused to a minimum spot size of 5 micrometers with 800 nm light and 3 micrometers with 400 nm light, producing a normal incidence peak intensity of 1018 Watts/cm2. A new 800 fs x-ray streak camera is used to study the broadband x-ray emission. The time resolved and time integrated x-ray emission implies substantial differences between the porous target and the flat target temperature.
We have developed a system for continuously variable independent tuning of the higher order frequency dependent phase of ultrashort laser pulses. This technique relies on geometric aberrations that arise from adjustments to the relative alignment of the elements of an air spaced doublet lens in systems such as a diffraction grating stretcher in which the spectral components of the optical pulses are spatially dispersed. Modeling results are compared to experimental measurements for a non optimized pulse stretcher/compressor combination showing the higher order phase aberrations that limit the performance of a chirped pulse amplification system. Numerical results are presented indicating these higher order phase terms can be compensated by a properly adjusted air spaced doublet design within the pulse stretcher.
We have designed and built an x-ray streak camera with subpicosecond time resolution. This camera attains its fast temporal resolution through a very strong extraction field, 100,000 V/cm, at the photocathode. It incorporates a narrow electron emission band photocathode that will also help the time resolution. The total time resolution has been calculated to be near 600 fs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.