Colorectal cancer is the second most common cancer and the second with the highest associated deaths in the world. Methods used in clinical practice for colon cancer diagnosis are fairly effective but quite unpleasant and not always applicable in situations where the patient has symptoms of colonic obstruction. This problem can be solved by the use of optical methods that can be applied less invasively.
This study presents the results of classification of cancerous and healthy colon tissue absorption coefficient spectra. The absorption coefficient was measured using direct calculations from the total reflectance and total transmittance spectra obtained ex vivo. Classification was performed using support vector machine, multilayer perceptron and linear discriminant analysis.
The interest of using light in clinical practice is increasing strongly and many applications work at various wavelengths from the ultraviolet to the infrared. Due to this great range of applications, the determination of the optical properties of biological tissues in a wide spectral range becomes of interest. The liver is an important organ, since it has a major role in the human body and various pathologies are known to develop within it. For these reasons, this study concerns the estimation of the optical properties of human normal and pathological (metastatic carcinoma) liver tissues between 200 and 1000 nm. The obtained optical properties present the expected wavelength dependencies for both tissues – the refractive index, the absorption and the scattering coefficients decrease with the wavelength and the anisotropy and light penetration depth increase with the wavelength. Although similar behavior was observed for the various properties between the normal and pathological tissues, evidence of smaller blood content in the pathological tissues was found. A possible explanation is that the cancer cells destroy liver’s vasculature and internal architecture, providing though a reduction in the blood content. For low wavelengths, it was observed a matching between the scattering and the reduced scattering coefficients, which implies a nearly zero anisotropy in that range. The scattering coefficient decreases from nearly 140 cm-1 (at 200 nm) to 80 cm-1 (at 1000 nm) for the normal liver and from nearly 140 cm-1 (at 200 nm) to 95 cm-1 (at 1000 nm) for the pathological tissue.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.