Colonoscopy is essential for examining colorectal polyp or cancer. Examining colonoscopy has allowed for a reduction in the incidence and mortality of colorectal cancer through the detection and removal of polyps. However, missed polyp rate during colonoscopy has been reported as approximately 24% and intra- and inter-observer variability for polyp detection rates among endoscopists has been an issue. In this paper, we propose a real-time deep learning-based colorectal polyp detection system called SmartEndo-Net. To extract the polyp information, ResNet-50 is used in the backbone. To enable high-level feature fusion, extra mix-up edges in all level of the fusion feature pyramid network (FPN) are added. Fusion features are fed to a class and box network to produce object class and bounding box prediction. SmartEndo-Net is compared with Yolo-V3, SSD, and Faster R-CNN. SmartEndo-Net recorded sensitivity of 92.17% and proposed network was higher 7.96%, 6.78%, and 10.05% than Yolo-V3, SSD, and Faster R-CNN. SmartEndo-Net showed stable detection results regardless of polyp size, shape, and surrounding structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.