The work presents the results of laboratory experiments on controlling the filamentation domain of a focused femtosecond laser beam with a spatially structured (using a deformable mirror) wavefront. We studied aberration beams consisting of coherent nested annular subapertures obtained with a specific shape of a deformable mirror determined from theoretical estimates. This makes it possible to create inhomogeneities in distribution of the optical field amplitude during propagation of the laser beam, which can subsequently become seeds for the light filaments formation. This regime of high-power radiation filamentation control does not require compensation for distortions in the initial beam profile, but on the contrary, it is based on the controlled introduction of preliminarily calculated wavefront aberrations.
The results of experimental and theoretical studies of behavior spectral profile of second harmonic (SH) radiation with a central wavelength of 475-477 nm during its formation in a nonlinear KDP crystal, depending on the phase matching angle and radiation intensity are presented. It is shown that a change in the propagation angle of fundamental radiation to one or the other side of phase matching angle by 16– 20 min leads to a spatially inhomogeneous broadening of the second harmonic spectrum up to two times and a shift of its maximum (averaged over the beam cross section) to shorter wavelengths from the central wavelength.
The results of experimental studies of conditions for THz emission generation in laser filament created by focused ultrashort laser pulse of Ti: Sapphire complex are presented. The influence of magnitude and direction of applied external electric field, energy and polarization of pump radiation in one- and two-color optical schemes on the intensity, divergence, and polarization of THz radiation are investigated. THz spectra is estimated and optimal generation conditions are discussed.
THz generation experimental results in a filament plasma produced by focusing ultrashort Ti:Sapphire laser pulses at a wavelength of 950 nm are reported. A study of structure and time-resolved dynamics of forming the laser filament is carried out. THz radiation dependence from filament length and pump energy is also given. Optimal conditions for efficient THz generating were found.
The paper presents the results of experimental and theoretical studies of the role of avalanche ionization in the process of highly nonlinear generation of electron-hole pairs in the interaction of intense femtosecond laser radiation with dosimetric crystals LiF:Mg,Ti. We assume that the effective formation of defects of hole-interstitial type, which consist of molecular halogen ions placed in one cationic and two anionic vacancies, distinguished by high-temperature peaks in the thermally stimulated luminescence curves, is feasibly connected with avalanche ionization processes occurring in the regions of passage of light filaments. The calculated dependences of the plasma density on time during the laser pulse made with taking into account the avalanche ionization for this type of crystals show that the contribution of avalanche ionization to the electron-hole plasma density is comparable to that of the multiphoton tunneling mechanism.
A latest results obtained in THL-100 hybrid femtosecond laser system operating in the visible spectral range are presented and the ways of the peak power increase of the laser beam are discussed.
The results of the formation and amplification of positive chirped 0.1 ns laser pulse at a central wavelength of 470 nm in the laser system THL-100 are presented. It is shown that a front-end allows forming a radiation pulse with a Gaussian intensity profile and the energy up to 7 mJ. At amplification in XeF(C-A) amplifier of the pulse with 2-5 mJ energy a saturated mode is realized and 3.2 J output laser beam energy is reached.
The paper presents the results of theoretical and experimental studies of the second harmonic generation process in the Ti:sapphire femtosecond complex, which includes a generator of the femtosecond pulse, stretcher, regenerative amplifier, two multi-pass amplifiers, compressor and second-harmonic generator. This complex provides the 50-fs pulses with energy of 20 mJ and it is used as a master oscillator in THL-100 hybrid laser system, which operates in the visible region at a wavelength of 475 nm. Experiments and calculations for various beam parameters of the fundamental harmonic, such as radiation intensity, spatial profile of the beam and the level of the noise component were performed. It is theoretically shown that in the absence of the noise component in the beam of the fundamental wave a good uniformity of the second harmonic should be observed. When making the amplitude heterogeneities in the first harmonic even greater heterogeneities in the second harmonic are appeared. It is experimentally shown that with increasing of energy beam the inhomogeneity of the second harmonic beam increases.
We present the results of studies of energy accumulation during the non-destructive interaction of extremely intense near infrared laser radiation with model wide band gap dielectric crystals of lithium fluoride, when the intensity of pulses is sufficient for effective highly nonlinear absorption of light and for the excitation of the electron subsystem of matter and the energy of pulses is still not sufficient for significant heating, evaporation, laser breakdown or other destruction to occur. We studied the emission of energy in the form of light sum of thermally stimulated luminescence accumulated under conditions of self-focusing and multiple filamentation of femtosecond laser radiation. It was established that it's the F2 and F3+ color centers and supplementary to them centers of interstitial type which accumulate energy under the action of a single femtosecond laser pulses. When irradiated by series of pulses the F3, F3- and F4 centers additionally appear. F2 centers are the main centers of emission in the process of thermally stimulated luminescence of accumulated energy. The interstitial fluoride ions (I-centers) are the kinetic particles. They split off from the X3- centers in the result of thermal decomposition of latter on the I-centers and molecules X20. I-centers recombine with F3+ centers and form F2 centers in excited state. The latter produce the characteristic emission spectrum emitted in the form of thermally stimulated luminescence.
The influence of the optical inhomogeneities effect of the prism stretcher elements on the spatial, angular and spectral parameters of the transmitted radiation and the degree of change in the phase aberrations of the laser beam during its propagation in the stretcher are studied. It is shown that the prism material does not allow transmitting of a required diameter of 75 mm without linear distortions of the beam. The maximum intensity and beam diameter allowing to amplify the picosecond pulses in XeF(C-A) amplifier are determined.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.