In this paper we present Big Bear Solar Observatory’s (BBSO) newest adaptive optics system – AO-308. AO-308 is a result of collaboration between BBSO and National Solar Observatory (NSO). AO-308 uses a 357 actuators deformable mirror (DM) from Xinetics and its wave front sensor (WFS) has 308 sub-apertures. The WFS uses a Phantom V7.3 camera which runs at 2000 Hz with the region of interest of 416×400 pixels. AO-308 utilizes digital signal processors (DSPs) for image processing. AO-308 has been successfully used during the 2013 observing season. The system can correct up to 310 modes providing diffraction limited images at all wavelengths of interest.
The 1.6m New Solar Telescope (NST) has developed a modern and comprehensive suite of instruments which allow high resolution observations of the Sun. The current instrument package comprises diffraction limited imaging, spectroscopic and polarimetric instruments covering the wavelength range from 0.4 to 5.0 microns. The instruments include broadband imaging, visible and near-infrared scanning Fabry-Perot interferometers, an imaging spectropolarimeter, a fast visible-light imaging spectrograph, and a unique new scanning cryogenic infrared spectrometer/spectropolarimeter that is nearing completion. Most instruments are operated with a 308 subaperture adaptive optics system, while the thermal-IR spectrometer has a correlation tracker. This paper reports on the current observational programs and operational performance of the telescope and instrumentation. The current control, data processing, and archiving systems are also briefly discussed.
We report on the multi-conjugate adaptive optics (MCAO) system of the New Solar Telescope (NST) at Big Bear Solar Observatory which has been integrated in October 2013 and is now available for MCAO experiments. The NST MCAO system features three deformable mirrors (DM), and it is purposely flexible in order to offer a valuable facility for development of solar MCAO. Two of the deformable mirrors are dedicated to compensation of field dependent aberrations due to high-altitude turbulence, whereas the other deformable mirror compensates field independent aberrations in a pupil image. The opto-mechanical design allows for changing the conjugate plane of the two high-altitude DMs independently between two and nine kilometers. The pupil plane DM can be placed either in a pupil image upstream of the high-altitude DMs or downstream. This capability allows for performing experimental studies on the impact of the geometrical order of the deformable mirrors and the conjugate position. The control system is flexible, too, which allows for real-world analysis of various control approaches. This paper gives an overview of the NST MCAO system and reveals the first MCAO corrected image taken at Big Bear Solar Observatory.
The largest solar telescope, the 1.6-m New Solar Telescope (NST) has been installed and is being commissioned
at Big Bear Solar Observatory (BBSO). It has an off-axis Gregorian configuration with a focal ratio of F/52.
Early in 2009, first light scientific observations were successfully made at the Nasmyth focus, which is located
on the east side of the telescope structure. As the first available scientific instruments for routine observation,
Nasmyth focus instrumentation (NFI) consists of several filtergraphs offering high spatial resolution photometry
in G-band 430 nm, Ha 656 nm, TiO 706 nm, and covering the near infrared 1083 nm, 1.6 μm, and 2.2 μm. With
the assistance of a local correlation tracker system, diffraction limited images were obtained frequently over a
field-of-view of 70 by 70 after processed using a post-facto speckle reconstruction algorithm. These data sets not
only serve for scientific analysis with an unprecedented spatial resolution, but also provide engineering feedback
to the NST operation, maintenance and optimization. This paper reports on the design and the implementation
of NFI in detail. First light scientific observations are presented and discussed.
Proc. SPIE. 6689, Solar Physics and Space Weather Instrumentation II
KEYWORDS: Observatories, Telescopes, Mirrors, Solar telescopes, Control systems, Space telescopes, Domes, Solar radiation, Camera shutters, Temperature metrology
The New Solar Telescope (NST) is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount and
an open optical support structure. To mitigate the temperature fluctuations along the exposed optical path,
the effects of local/dome-related seeing have to be minimized. To accomplish this, NST will be housed in a
5/8-sphere fiberglass dome that is outfitted with 14 active vents evenly spaced around its perimeter. The 14
vents house louvers that open and close independently of one another to regulate and direct the passage of air
through the dome. In January 2006, 16 thermal probes were installed throughout the dome and the temperature
distribution was measured. The measurements confirmed the existence of a strong thermal gradient on the order
of 5° Celsius inside the dome. In December 2006, a second set of temperature measurements were made using
different louver configurations. In this study, we present the results of these measurements along with their
integration into the thermal control system (ThCS) and the overall telescope control system (TCS).
Big Bear Solar Observatory (BBSO) is building the 1.6 meter New Solar Telescope (NST). The Telescope Control
System (TCS) of NST consists of many systems and applications and heterogeneous computer platforms. It is a critical
task to design a robust, flexible and reliable - yet not over-complicated - communications for TCS. This paper describes
the design and implementation of NST's communication software and protocols. The software is based on the Internet
communication engine (Ice) middleware and uses eXtensible Markup Language (XML) for messaging.
The New Solar Telescope (NST) is an advanced solar telescope at Big Bear Solar Observatory (BBSO). It features a 1.6-m clear aperture with an off-axis Gregorian configuration. An open structure will be employed to improve the local seeing. The NST Telescope Control System (TCS) is a complex system, which provides powerful and robust control over the entire telescope system. At the same time, it needs to provide a simple and clear user interface to scientists and observers. We present an overview of the design and implementation of the TCS as a distributed system including its several subsystems such as the Telescope Pointing and Tracking Subsystem, Wavefront Sensing Subsystem etc. The communications between different subsystems are handled by the Internet Communication Engine (Ice) middleware.
Proc. SPIE. 6267, Ground-based and Airborne Telescopes
KEYWORDS: Observatories, Telescopes, Mirrors, Astronomy, Solar telescopes, Wavefront sensors, Adaptive optics, Control systems, Space telescopes, Domes
The New Solar Telescope (NST) project at Big Bear Solar Observatory (BBSO) now has all major contracts
for design and fabrication in place and construction of components is well underway. NST is a collaboration
between BBSO, the Korean Astronomical Observatory (KAO) and Institute for Astronomy (IfA) at the University
of Hawaii. The project will install a 1.6-meter, off-axis telescope at BBSO, replacing a number of older solar
telescopes. The NST will be located in a recently refurbished dome on the BBSO causeway, which projects
300 meters into the Big Bear Lake. Recent site surveys have confirmed that BBSO is one of the premier solar
observing sites in the world. NST will be uniquely equipped to take advantage of the long periods of excellent
seeing common at the lake site. An up-to-date progress report will be presented including an overview of the
project and details on the current state of the design. The report provides a detailed description of the optical
design, the thermal control of the new dome, the optical support structure, the telescope control systems, active
and adaptive optics systems, and the post-focus instrumentation for high-resolution spectro-polarimetry.
We describe our progress in the development of a software package to control a Fabry-Pérot interferometer (FPI) at the Big Bear Solar Observatory (BBSO). The FPI is a key part of our new Visible-Light Imaging Magnetograph (VIM). We describe the software libraries and methods that we use to develop the software. We also present specifications and characteristics of this new instrument.
32-bit database application with multidocument interface for Windows has been developed to calculate absolute energy distributions of observed spectra. The original database contains wavelength calibrated observed spectra which had been already passed through apparatus reductions such as flatfielding, background and apparatus noise subtracting. Absolute energy distributions of observed spectra are defined in unique scale by means of registering them simultaneously with artificial intensity standard. Observations of sequence of spectrophotometric standards are used to define absolute energy of the artificial standard. Observations of spectrophotometric standards are used to define optical extinction in selected moments. FFT algorithm implemented in the application allows performing convolution (deconvolution) spectra with user-defined PSF. The object-oriented interface has been created using facilities of C++ libraries. Client/server model with Windows Socket functionality based on TCP/IP protocol is used to develop the application. It supports Dynamic Data Exchange conversation in server mode and uses Microsoft Exchange communication facilities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.