IXPE (Imaging X-ray Polarimetry Explorer) is the next Nasa Small Explorer mission foreseen for the lunch in 2021. It is a partnership with the Italian Space Agency (ASI). IXPE is devoted to X-ray polarimetry in the 2-8 keV energy band. The IXPE telescope comprises three grazing incidence mirror modules coupled to three detector units hosting each one a Gas Pixel Detector (GPD) polarimeter. The GPD exploits the photoelectric effect to measure the linear polarization of the X-ray emission from astrophysical sources. A wide and accurate on ground calibration was carried out on the IXPE detector units at INAF-IAPS in Italy. A dedicated facility was set-up to calibrate the detector units with polarized and unpolarised X-rays at different energies before Instrument integration.
IXPE (Imaging X-ray Polarimetry Explorer) is a NASA SMEX in a partnership with ASI. The focal plane Detector Units (DUs) and the Detector Service Unit (DSU) were developed by the Italian research Institutes INAF-IAPS and INFN and were manufactured by OHB-I. IXPE will investigate X-ray polarimetry in the 2-8 keV energy band. The payload comprises three identical telescopes, each composed of a mirror and a detector unit with an X-ray polarimeter based on the Gas Pixel Detector (GPD). A stray-light collimator (SLC) is mounted on the top of the DU to shield the GPD from background X-rays not coming from the optics. At the bottom of the SLC, an ions-UV filter is mounted to reduce the thermal load and to prevent ions and UV from entering the DU. The ions-UV filters consist mainly of 1 um LUXFilm (based on polyimide). During on-ground calibration activities of the IXPE DUs, X-ray transparency of DU-FM ions-UV filters was measured with monochromatic X-ray at 2.7 keV and 6.4 keV at INAF-IAPS.
The eXTP (enhanced X-ray Timing and Polarimetry) mission is a major project of the Chinese Academy of Sciences (CAS) and China National Space Administration (CNSA) currently performing an extended phase A study and proposed for a launch by 2025 in a low-earth orbit. The eXTP scientific payload envisages a suite of instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray spectral, timing and polarimetry sensitivity. A large European consortium is contributing to the eXTP study and it is expected to provide key hardware elements, including a Large Area Detector (LAD). The LAD instrument for eXTP is based on the design originally proposed for the LOFT mission within the ESA context. The eXTP/LAD envisages a deployed 3.4 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we provide an overview of the LAD instrument design, including new elements with respect to the earlier LOFT configuration.
IXPE scientific payload comprises of three telescopes, each composed of a mirror and a photoelectric polarimeter based on the Gas Pixel Detector design. The three focal plane detectors, together with the unit which interfaces them to the spacecraft, are named IXPE Instrument and they will be built and calibrated in Italy; in this proceeding, we will present how IXPE Instrument will be calibrated, both on-ground and in-flight. The Instrument Calibration Equipment is being finalized at INAF-IAPS in Rome (Italy) to produce both polarized and unpolarized radiation, with a precise knowledge of direction, position, energy and polarization state of the incident beam. In flight, a set of four calibration sources based on radioactive material and mounted on a filter and calibration wheel will allow for the periodic calibration of all of the three IXPE focal plane detectors independently. A highly polarized source and an unpolarized one will be used to monitor the response to polarization; the remaining two will be used to calibrate the gain through the entire lifetime of the mission.
eXTP is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state of matter at supra-nuclear density, the measurement of QED effects in highly magnetized star, and the study of accretion in the strong-field regime of gravity. Primary targets include isolated and binary neutron stars, strong magnetic field systems like magnetars, and stellar-mass and supermassive black holes. The mission carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV (and beyond). Key elements of the payload are: the Spectroscopic Focusing Array (SFA) - a set of 11 X-ray optics for a total effective area of ∼0.9 m2 and 0.6 m2 at 2 keV and 6 keV respectively, equipped with Silicon Drift Detectors offering <180 eV spectral resolution; the Large Area Detector (LAD) - a deployable set of 640 Silicon Drift Detectors, for a total effective area of ∼3.4 m2, between 6 and 10 keV, and spectral resolution better than 250 eV; the Polarimetry Focusing Array (PFA) – a set of 2 X-ray telescope, for a total effective area of 250 cm2 at 2 keV, equipped with imaging gas pixel photoelectric polarimeters; the Wide Field Monitor (WFM) - a set of 3 coded mask wide field units, equipped with position-sensitive Silicon Drift Detectors, each covering a 90 degrees x 90 degrees field of view. The eXTP international consortium includes major institutions of the Chinese Academy of Sciences and Universities in China, as well as major institutions in several European countries and the United States. The predecessor of eXTP, the XTP mission concept, has been selected and funded as one of the so-called background missions in the Strategic Priority Space Science Program of the Chinese Academy of Sciences since 2011. The strong European participation has significantly enhanced the scientific capabilities of eXTP. The planned launch date of the mission is earlier than 2025.
XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of
writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the
polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently
exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially-
resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics.
Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective
area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega
launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest
Observer competitive program and it is organized as a consortium across Europe with main contributions from
Italy, Germany, Spain, United Kingdom, Poland, Sweden.
COMpton Polarimeter with Avalanche Silicon readout (COMPASS) is a research and development project that aims to measure the polarization of X-ray photons through Compton Scattering. The measurement is obtained by using a set of small rods of fast scintillation materials with both low-Z (as active scatterer) and high-Z (as absorber), all read-out with Silicon Photomultipliers. By this method we can operate scattering and absorbing elements in coincidence, in order to reduce the background.
In the laboratory we are characterising the SiPMs using different types of scintillators and we are optimising the performances in terms of energy resolution, energy threshold and photon tagging efficiency.
We aim to study the design of two types of satellite-borne instruments: a focal plane polarimeter to be coupled with multilayer optics for hard X-rays and a large area and wide field of view polarimeter for transients and Gamma Ray Bursts.
In this paper we describe the status of the COMPASS project, we report about the laboratory measurements and we describe our future perspectives.
The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission.
The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m2-class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales.
The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most of the trade-offs have been closed leading to a robust and well documented design that will be reproposed in future ESA calls. In this talk, we will summarize the characteristics of the LAD design and give an overview of the expectations for the instrument capabilities.
The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO’s to yearlong transient outbursts. In this paper we report the current status of the project.
The Large Observatory for X-ray Timing (LOFT) is one of the four candidate ESA M3 missions considered for launch in
the 2022 timeframe. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black
holes and neutron stars. The LOFT scientific payload is composed of a Large Area Detector (LAD) and a Wide Field
Monitor (WFM). The LAD is a 10 m2-class pointed instrument with 20 times the collecting area of the best past timing
missions (such as RXTE) over the 2-30 keV range, which holds the capability to revolutionize studies of X-ray
variability down to the millisecond time scales. Its ground-breaking characteristic is a low mass per unit surface,
enabling an effective area of ~10 m2 (@10 keV) at a reasonable weight. The development of such large but light
experiment, with low mass and power per unit area, is now made possible by the recent advancements in the field of
large-area silicon detectors - able to time tag an X-ray photon with an accuracy <10 μs and an energy resolution of ~260
eV at 6 keV - and capillary-plate X-ray collimators. In this paper, we will summarize the characteristics of the LAD
instrument and give an overview of its capabilities.
The X-ray sky in high time resolution holds the key to a number of observables related to fundamental physics,
inaccessible to other types of investigations, such as imaging, spectroscopy and polarimetry. Strong gravity effects, the
measurement of the mass of black holes and neutron stars, the equation of state of ultradense matter are among the
objectives of such observations. The prospects for future, non-focused X-ray timing experiments after the exciting age of
RXTE/PCA are very uncertain, mostly due to the technological limitations that need to be faced to realize experiments
with effective areas in the range of several square meters, meeting the scientific requirements. We are developing large-area
monolithic Silicon drift detectors offering high time and energy resolution at room temperature, with modest
resources and operation complexity (e.g., read-out) per unit area. Based on the properties of the detector and read-out
electronics we measured in laboratory, we built a concept for a realistic unprecedented large mission devoted to X-ray
timing in the energy range 2-30 keV. We show that effective areas in the range of 10-15 square meters are within reach,
by using a conventional spacecraft platform and launcher.
The New Hard X-Ray Imaging and Polarimetric Mission makes a synergic use of Hard X-Ray Imaging, Spectroscopy
and Polarimetry, as independent diagnostic of the same physical systems. It exploits the technology of
multi-layer optics that, with a focal length of 10 m, allow for spectroscopic and imaging, with a resolution from
15 to 20 arcseconds, on the band 0.2 - 80 keV. One of the four telescopes is devoted to polarimetry. Since the
band of a photoelectric polarimeter is not that wide, we foresee two of them, one tuned on the lower energy band
(2-10 keV) and another one tuned on higher energies (6 - 35 keV). The blurring due to the inclined penetration
of photons in the gas , thanks to the long focal length is practically negligible. In practice the polarimeters fully
exploit the resolution the telescope and NHXM can perform angular resolved simultaneous spectroscopy and
polarimetry on the band 2 - 35 keV. We are also studying the possibility to extend the band up to 80 keV by
means of a focal plane scattering polarimeter.
The science drivers for a new generation soft gamma-ray mission are naturally focused on the detailed study of
the acceleration mechanisms in a variety of cosmic sources. Through the development of high energy optics in the
energy energy range 0.05-1 MeV it will be possible to achieve a sensitivity about two orders of magnitude better
than the currently operating gamma-ray telescopes. This will open a window for deep studies of many classes of
sources: from Galactic X-ray binaries to magnetars, from supernova remnants to Galaxy clusters, from AGNs
(Seyfert, blazars, QSO) to the determination of the origin of the hard X-/gamma-ray cosmic background, from
the study of antimatter to that of the dark matter. In order to achieve the needed performance, a detector with
mm spatial resolution and very high peak efficiency is needed. The instrumental characteristics of this device
could eventually allow to detect polarization in a number of objects including pulsars, GRBs and bright AGNs. In
this work we focus on the characteristics of the focal plane detector, based on CZT or CdTe semiconductor sensors
arranged in multiple planes and viewed by a side detector to enhance gamma-ray absorption in the Compton
regime. We report the preliminary results of an optimization study based on simulations and laboratory tests,
as prosecution of the former design studies of the GRI mission which constitute the heritage of this activity.
The XEUS mission incorporates two satellites: the Mirror Spacecraft with 5 m2 of collecting area at 1 keV and
2 m2 at 7 keV, and an imaging resolution of 5" HEW and the Payload Spacecraft which carries the focal plane
instrumentation. XEUS was submitted to ESA Cosmic Vision and was selected for an advanced study as a
large mission. The baseline design includes XPOL, a polarimeter based on the photoelectric effect, that takes
advantage of the large effective area which permits the study of the faint sources and of the long focal length,
resulting in a very good spatial resolution, which allows the study of spatial features in extended sources. We
show how, with XEUS, Polarimetry becomes an efficient tool at disposition of the Astronomical community.
The development of formation flying technology in space has opened a new window for astronomy at hard X-γ-ray
wavelenghts, allowing observations with unprecedented angular resolution (location accuracy of the order of few
arcsec). This has stimulated the development of new concepts for imaging instruments: on one side, the focusing
telescopes like γ-ray lens, using small,well shielded detector volumes, on the other side very large area γ-ray
imagers, both allowing a big step in sensitivity. We report on a study for the concept of a large area (1 square
meter), narrow field coded mask telescope with arcsec imaging capability, based on CZT detector technology
and active collimation system, made of Si microstrip detector modules and operating in the energy band 15-500
keV. Feasibility and performance characteristics are discussed as well as possible geometric configurations and
background suppression schemes, in the light of data obtained from INTEGRAL/IBIS and other CdTe/CZT
instruments currently in space.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.