Ultrashort pulse lasers based on fiber optic architecture will play a dominant role in the spread of these lasers into research and industrial applications. The principle challenge is to generate adequate pulse energy from singlemode or quasi-singlemode amplifiers which have small cross-sectional area. We demonstrate a robust, all-fiber erbium amplifier system that produces >100 μJ per pulse with 701 fs pulsewidth and M2 < 1.3. We will discuss the salient amplifier dynamics that influence the pulse generation, shaping, and propagation phenomena in state-of-the-art erbium fiber lasers. Furthermore, we show data relevant to applications and implementation of ultrashort pulse lasers.
Chatter is one of the most critical errors in grinding since it can both degrade the surface quality and reduce productivity. In this paper a model for regenerative chatter during the contour grinding of optical surfaces is developed. In this model, a nonlinear formula for projected contact area is used to derive the process cutting stiffness that predicts the occurrence of chatter. Experimental results show how chatter can be minimized by properly selecting the process parameters.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.