This paper reports a Ka-band microstrip patch antenna fabricated using post-CMOS compatible process technology. The antenna uses an air cavity underneath the patch radiator that is supported on thin membrane. To start with, a thin dielectric film of silicon dioxide is deposited on <100> single crystal silicon substrates by RF sputtering process. The membrane is then realized using bulk micromachining technology. The antenna structure was analyzed and optimized using the finite-element method (FEM) based Ansoft High Frequency Structure Simulator software (version 9). The antenna structure mounted on a test jig with K-connector was used for testing its performance. The measured results of the fabricated prototype antenna agree quite closely with the simulated results. The fabricated antenna resonated at 36 GHz with -10 dB return loss bandwidth of 1.2 GHz. In the absence of access to well-established MEMS foundry, the RF sputtering process reported here can be advantageously used for rapid prototyping of many antenna structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.