Instantaneous personnel location presents a challenge in Department of Defense applications where high levels of security restrict real-time tracking of crew members. During emergency situations, command and control requires immediate accountability of all personnel. Current radio frequency (RF) based indoor positioning systems can be unsuitable due to RF leakage and electromagnetic interference with sensitively calibrated machinery on variable platforms like ships, submarines and high-security facilities. Infrared light provide a possible solution to this problem. This paper proposes and evaluates an indoor line-of-sight positioning system that is comprised of IR and high-sensitivity CMOS camera receivers. In this system the movement of the LEDs is captured by the camera, uploaded and analyzed; the highest point of power is located and plotted to create a blueprint of crewmember location. Results provided evaluate accuracy as a function of both wavelength and environmental conditions. Research will further evaluate the accuracy of the LED transmitter and CMOS camera receiver system. Transmissions in both the 780 and 850nm IR are analyzed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.