A five element zoomable anamorphic beam expander is designed and fabricated for a laser illumination system used in the manufacture of patterned micro-circuit substrates. The beam expander is the front end of a Gaussian to top-hat beam shaping illuminator. The tightly toleranced optical system downstream of the beam expander should not be readjusted with changes to the input beam. The job of the beam expander is to maintain, independent of the input beam, a constant diffraction limited output beam size as well as a specific waist location. A high power quasi-CW laser at 355 nm is employed for high throughput. The specifications of the laser allow for a range of x,y-beam diameters (ellipticity), x,y-waist locations (astigmatism), and x,y-divergence. As the laser’s frequency tripling crystal is exposed to high fluence over time, the beam parameters will change. At some point the laser is exchanged for a new one, and a new set of beam parameters is presented to the beam expander. Movable cylindrical lenses enable the independent adjustment of x- and y-beam parameters. The mounting cells are motorized to enable adjustments remotely. We present the optical design approach using Gaussian beam ray tracing and discuss the mechanical implementation.
A Gaussian to top-hat beam homogenizer has been designed and fabricated for a UV laser illumination system used in the manufacture of integrated circuit substrates. An important part of the system is a “coherence buster” which is used for minimizing interference effects, normally encountered when using microlens array homogenizers together with a coherent light source. The coherence buster is a diffraction grating, which introduces a time delay across the beam. If this time delay is sufficiently large in comparison to the pulse length, it can be so arranged that beams, which would normally interfere, now arrives at different times and therefore add incoherently. The theory behind the coherence reduction is described, as well as the design of the grating. The irradiance uniformity of the manufactured homogenizer has been measured, and shown to be free from interference fringes.
One of the sub-functions in the Micronic Sigma 7300 mask writer is the 2:nd layer alignment system for writing of phase shift masks. The strategy chosen for performing PSM alignment is to use the DUV writing laser together with the spatial light modulator (SLM) to create a light stamp image, which is reflected on the first layer alignment marks. The reflected image is captured and measured with a DUV-sensitive CCD camera. Using the writing laser has many benefits since there is no position offsets coming from misalignment of multiple laser sources. The anti-reflection (AR) function in chemically amplified resists (CAR), bottom anti-reflex coatings (BARC) and top anti-reflex coatings (TARC) reduces reflectance for 248 nm incoming light. This could reduce the signal strength and accuracy of the alignment system as the 248 nm laser is used for the alignment. The paper focuses mainly on two issues, image contrast at different resist thicknesses and image contrast when AR coatings are used. The algorithm measuring the fist layer alignment mark positions is also described. The studies of this and results of the final PSM alignment system show that Micronic has found an efficient way of dealing with these issues.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.