Met-myoglobin is a major component related to meat discoloration, and it gradually accumulates over time after the meat is slaughtered. Recently, studies have been conducted to observe the changes in the composition of met-myoglobin in the meat along with its storage time using Diffuse Reflectance Spectroscopy(DRS). DRS is an optical technique that is simple and can estimate the composition of chromophores without damaging the sample. However, since DRS requires high resolution and complicated fitting process, it is difficult to apply DRS to the mobile environment. Therefore, the purpose of our study is to classify the freshness of meat by extracting features from low spectral resolution diffuse reflectance spectrum by using the deep learning model. To improve the generality of the model, a data augmentation was used. To consider the applicability at low-resolution spectrometer, the diffuse reflectance spectrum was down-sampled 5, 10, 30 and 50 times.
Surgical excision (Mohs micrographic surgery) is the standard procedure to treat a melanoma, in which an in situ histologic examination of sectioned skin is carried out repeatedly until no cancer cells are detected. The possibility to identify melanoma from the surrounding skin by femtosecond laser-induced breakdown spectroscopy (fs-LIBS) is investigated. For experiments, melanoma induced on a hairless mouse by injection of B16/F10 murine melanoma cell was sampled in the form of frozen tissue sections as in Mohs surgery and analyzed by fs-LIBS (λ = 1030 nm, τ = 550 fs). For analysis, the magnesium signal normalized by carbon intensity was utilized to construct an intensity map around the cancer, including both melanoma and surrounding dermis. The intensity map showed a close match to the optically observed morphological and histological features near the cancer region. The results showed that when incorporated into the existing micrographic surgery procedure, fs-LIBS could be a useful tool for histopathologic interpretation of skin cancer possibly with significant reduction of histologic examination time.
This work reports that the laser fluence rate inside porcine skin varied notably with the change of tissue water content under the same laser irradiation conditions. The laser fluence rate inside skin tissue samples with varying water content was measured using an optical fiber sensor, while the target was irradiated either by a low-level 635 or 830 nm laser (50 mW/cm2). It was demonstrated that the distribution of laser fluence rate inside the target is strongly affected by tissue water content and its profile is determined by the water content dependency of optical properties at the laser wavelength.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.