Cultures of algae, such as cyanobacteria, are a promising source of renewable energy. However, algal growth is highly dependent on light intensity and standard photobioreactors do a poor job of distributing light uniformly for algal utilization due to shading effects in dense algal cultures. Engineered scattering schemes are already employed in current slab-waveguide technologies, like edge-lit LEDs. Stacking such slab-waveguides that uniformly distribute light could potentially yield photobioreactors to overcome the shading effect and grow extremely high densities of algal cultures that would lower monetary and energetic costs. Here, we characterize and design a scattering scheme for specific application within photobioreactors which employs a gradient distribution of surface scatterers with uniform lateral scattering intensity. This uniform scattering scheme is shown to be superior for algal cultivation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.