This will count as one of your downloads.
You will have access to both the presentation and article (if available).
The ASTRI Mini-Array is an international project led by the Italian National Institute for Astrophysics (INAF) aiming at building and operating an array of nine Imaging Atmospheric Cherenkov Telescopes (IACTs) at the Observatorio del Teide in Tenerife (Canary Islands, Spain). UVSiPM, a calibrated small photon counter working in the 280-900 nm wavelength range, is one of the auxiliary instruments of the ASTRI Mini-Array.
UVSiPM is mainly devoted to measure the level of night sky background during the ASTRI Mini-Array observations in the same energy range of the ASTRI cameras. It is composed of one single multi-pixel SiPM sensor (the same model adopted in the ASTRI Mini-Array Cherenkov cameras) coupled to an electronic chain working in single photon counting mode. The design of the optical system foresees a pin-hole mask equipped with a collimator to regulate the UVSiPM field of view. UVSiPM will be mounted on the external structure of one of the ASTRI Mini-Array telescopes and co-aligned with its camera. In addition, it will be used as a support instrument for the absolute end-to-end calibration of the ASTRI Mini-Array telescopes performed with the illuminator, a further auxiliary device devoted to perform the optical throughput calibration of each telescope of the array. Last but not least, UVSiPM can be used as diagnostic tool for the camera functionalities. In this contribution we present the overall design of the UVSiPM instrument and some preliminary results of its performance based on simulations.The main scientific instrument of the ASTRI-Horn telescope is an innovative and compact Camera with Silicon- Photomultiplier based detectors and a specifically designed fast read-out electronics based on a custom peak-detector mode. The thermo-mechanical assembly is designed to host both the entire electronics chain, from the sensors to the raw data transmission system and the calibration system, and the complete thermoregulation system.
This contribution gives a high level description of the T/M and electrical design of the Cherenkov Camera, it describes the assembling procedure of its different subsystems and their integration into the complete camera system. A discussion about possible design improvements coming from the problems/difficulties encountered during assembly is also presented. Finally, results from engineering tests conducted in-field are also presented.
In the laboratory we are characterising the SiPMs using different types of scintillators and we are optimising the performances in terms of energy resolution, energy threshold and photon tagging efficiency.
We aim to study the design of two types of satellite-borne instruments: a focal plane polarimeter to be coupled with multilayer optics for hard X-rays and a large area and wide field of view polarimeter for transients and Gamma Ray Bursts.
In this paper we describe the status of the COMPASS project, we report about the laboratory measurements and we describe our future perspectives.
The background for this kind of detectors accounts for several components: the diffuse Cosmic Xray Background, the low energy particles (< ~100 keV) focalized by the mirrors and reaching the detector from inside the field of view, and the high energy particles (> ~100 MeV) crossing the spacecraft and reaching the focal plane from every direction. In particular, these high energy particles lose energy in the materials they cross, creating secondaries along their path that can induce an additional background component.
Each one of these components is under study of a team dedicated to the background issues regarding the X-IFU, with the aim to reduce their impact on the instrumental performances. This task is particularly challenging, given the lack of data on the background of X-ray detectors in L2, the uncertainties on the particle environment to be expected in such orbit, and the reliability of the models used in the Monte Carlo background computations. As a consequence, the activities addressed by the group range from the reanalysis of the data of previous missions like XMMNewton, to the characterization of the L2 environment by data analysis of the particle monitors onboard of satellites present in the Earth magnetotail, to the characterization of solar events and their occurrence, and to the validation of the physical models involved in the Monte Carlo simulations. All these activities will allow to develop a set of reliable simulations to predict, analyze and find effective solutions to reduce the particle background experienced by the X-IFU, ultimately satisfying the scientific requirement that enables the science of ATHENA.
While the activities are still ongoing, we present here some preliminary results already obtained by the group. The L2 environment characterization activities, and the analysis and validation of the physical processes involved in the Monte Carlo simulations are the core of an ESA activity named AREMBES (Athena Radiation Environment Models and Effects), for which the work presented here represents a starting point.
The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most of the trade-offs have been closed leading to a robust and well documented design that will be reproposed in future ESA calls. In this talk, we will summarize the characteristics of the LAD design and give an overview of the expectations for the instrument capabilities.