We propose an innovative method for aluminum doping of 4H-SiC with passivation films, induced by XeF excimer laser irradiation in AlCl3 aqueous solution (28.6 wt%). A 100-nm thick Si passivation film was deposited on an n-type 4H-SiC substrate by physical vapor deposition. Using a laser beam (200 μm × 170 μm) with an irradiation fluence of 0.5–5.0 J/cm2, 1–300 shots were administered. After laser irradiation of 1.0 J/cm2 and 300 shots, an Al-Si-O compound film was formed on the SiC surface. The compound film was removed by chemical wet etching and plasma treatment. After the removal of the compound film, no irradiation damage was observed on the SiC surface. From the results of secondary ion mass spectrometry measurements, high concentration aluminum doping (about 1 × 1020 /cm3 at the surface) was confirmed. The I-V characteristics of the junction between the n-type substrate and the irradiation area indicated clear rectification with a large on/off ratio of 9 decades in the range of ±10 V. When forward biased, electroluminescence phenomenon with a peak at 387 nm, corresponding to the electroluminescence of SiC’s band gap, was confirmed. These results prove the achievement of Al doping of n-type SiC to p-type using laser irradiation without any damage to the SiC surface.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.