PROCEEDINGS ARTICLE | March 15, 2013
Proc. SPIE. 8633, High Contrast Metastructures II
KEYWORDS: Optomechanical design, Optical filters, Mirrors, Fabry–Perot interferometers, Doppler effect, Reflectivity, Electronic filtering, Laser beam diagnostics, Optical cooling, Diffraction gratings
Subwavelength diffraction gratings patterned into a silicon nitride membrane offer a novel new platform for cavity
optomechanics. The monolithic device combines high reflectivity, high mechanical quality factor, and low mass.
Here we survey results we have obtained using such a device as one mirror of a Fabry-Perot cavity. With a cavity
finesse of F ≈ 2000, we are able to optically cool hundreds of mechanical modes of the membrane. The lowest
effective temperature we achieve, by detuning a laser to the red side of an optical resonance, is approximately
Teff = 1 K. The cooling is accompanied by an optically-induced shift of the mechanical frequency, as expected; both the degree of cooling and frequency shift are proportional to the power of the cooling laser. When we
detune the laser to the blue side of the resonance, the resulting optical “antidamping” causes the dynamics of the
mechanical system to change from thermal to oscillatory, with a well-defined phase. Finally, we computationally
investigate the feasibility of a proposal to realize radiation pressure optomechanics without a cavity, by use of a
subwavelength grating with a rapid variation of reflectivity with wavelength.