Dr. Volker Dicken
at Fraunhofer MEVIS
SPIE Involvement:
Author | Instructor
Publications (8)

Proceedings Article | 2 March 2020 Presentation + Paper
Proceedings Volume 11318, 113180U (2020) https://doi.org/10.1117/12.2549582
KEYWORDS: Neural networks, Translational research, Image segmentation, Algorithm development, Medical imaging, Visualization, Image processing, Prototyping, Data processing

Proceedings Article | 15 March 2019 Presentation + Paper
Volker Dicken, Annika Hänsch, Jan Moltz, Benjamin Haas, Thomas Coradi, Tomasz Morgas, Jan Klein
Proceedings Volume 10949, 1094914 (2019) https://doi.org/10.1117/12.2512750
KEYWORDS: Visualization, Natural surfaces, Image segmentation, 3D modeling, Statistical analysis, Optical inspection, Error analysis, Data modeling, Visual analytics

Proceedings Article | 13 March 2019 Paper
Annika Hänsch, Volker Dicken, Jan Klein, Tomasz Morgas, Benjamin Haas, Horst Hahn
Proceedings Volume 10950, 109500T (2019) https://doi.org/10.1117/12.2512727
KEYWORDS: Uterus, Bladder, Rectum, Image segmentation, Computed tomography, Neural networks, Radiotherapy

SPIE Journal Paper | 1 October 2018 Open Access
Annika Hänsch, Michael Schwier, Tobias Gass, Tomasz Morgas, Benjamin Haas, Volker Dicken, Hans Meine, Jan Klein, Horst K. Hahn
JMI, Vol. 6, Issue 01, 011005, (October 2018) https://doi.org/10.1117/12.10.1117/1.JMI.6.1.011005
KEYWORDS: Image segmentation, Neural networks, Computed tomography, Head, Neck, 3D modeling, Data modeling, Radiotherapy, 3D image processing, Distance measurement

Proceedings Article | 13 March 2010 Paper
Frank Heckel, Volker Dicken, Tilman Bostel, Michael Fabel, Andreas Kiessling, Heinz-Otto Peitgen
Proceedings Volume 7623, 76230T (2010) https://doi.org/10.1117/12.844200
KEYWORDS: Tissues, Liver, Image segmentation, Lymphatic system, Computed tomography, Tumors, Algorithm development, Polonium, Diagnostics, Natural surfaces

Showing 5 of 8 publications
Course Instructor
SC1235: Introduction to Medical Image Analysis Using Convolutional Neural Networks
Segmentation, detection, and classification are major tasks in medical image analysis and image understanding. Medical imaging researchers heavily use the results of recent developments in machine learning approaches, and with deep learning methods they achieve significantly better results in many real-world problems compared to previous solutions. The course aims to enable students and professionals to apply deep learning methods to their data and problem. Using an interactive programming environment, participants of the course will explore all required steps in practice and learn tools and techniques from data preparation to result interpretation. We will work on example data and train models to segment anatomical structures, to detect abnormalities, and to classify them. Simple methods to explain predictions and assess network uncertainty will be discussed briefly as well. Participants will work in a prepared online environment providing selected deep learning toolkit installations, example data, and fully functional skeleton code as a basis for own experiments.
SC1262: Adversarial Networks: From Architecture to Practical Training
This half-day deep dive course will guide researchers with some background knowledge, e.g. from the introductory course, SC1235 Introduction to Medical Image Analysis using Convolutional Neural Networks, through the most important concepts of generative adversarial networks (GANs) and show example applications to medical data. GANs are powerful appearance models, but GANs can also be used to map between different domains (such as between CT and MRI) or to help training better segmentation models. Adversarial training can be introduced into several learning tasks in medical image analysis. It has been shown to help make image analysis algorithms more robust to variability in the data and to reduce the probability of failure on unseen cases. GANs in their initial implementation have been known to be hard to configure and train, but recent advances have helped them catch ground in applications of classification and segmentation. We will introduce GANs conceptually and from a Variational Inference perspective, give an overview of their development towards the state of the art, and explain specific architectural decisions and developments that have been proposed to stabilize their training. We will show code examples and illustrate the course content with live demonstrations on example data, so that the participants gain some first-hand experience on the subject. The course is not designed as a hands-on workshop, though.
  • View contact details

Is this your profile? Update it now.
Don’t have a profile and want one?

Back to Top