Proceedings Article | 17 October 2013
Proc. SPIE. 8890, Remote Sensing of Clouds and the Atmosphere XVIII; and Optics in Atmospheric Propagation and Adaptive Systems XVI
KEYWORDS: Point spread functions, Imaging systems, Sensors, Satellites, Fourier transforms, Modulation transfer functions, Spatial resolution, Algorithm development, Climatology, Environmental sensing
The Advanced Baseline Imager (ABI) is the primary instrument onboard GOES-R for imaging Earth’s weather, climate,
and environment and will be used for a wide range of applications related to weather, oceans, land, climate, and hazards
(fires, volcanoes, hurricanes, and storms that spawn tornados). It will provide over 65% of all the mission data products
currently defined. ABI views the Earth with 16 different spectral bands, including two visible channels, four nearinfrared
channels and ten infrared channels at 0.5, 1, and 2 km spatial resolutions respectively. For most of the
operational ABI retrieval algorithms, the collocated/co-registered radiance dataset are at 2 km resolution for all of the
bands required. This requires down-scaling of the radiance data from 0.5 or 1 km to 2 km for ABI visible and near-IR
bands (2 or 1, 3 & 5 respectively), the reference of 2 km is the nominal resolution at the satellite sub-point. In this paper,
the spatial resolution characteristic of the ABI fixed grid level1b radiance data is discussed. An optimum interpolation
algorithm which has been developed for the ABI multiple channel radiance down-scaling processing is present.