A design and analysis of symmetric on-chip planar inductors are
presented based in 0.5 μm silicon-on-sapphire CMOS process of Peregrine Semiconductor. Compared to conventional CMOS processes, an insulating thick sapphire (Al2O3) substrate enables higher quality factor inductors due to low energy loss in the substrate. In addition, symmetric cross-coupled configuration of identical asymmetric inductors of thick top metalization minimizes the insertion loss. Such differentially connected inductors are
simulated on 2.5D electromagnetic field environment and a modeling method of quasi-3D structures is introduced for the metal strips. Maximum quality factor of 53.6 with 2.34 nH at 8.9 GHz is achieved by optimizing the symmetric circular inductors. This inductor is used in the design of a low power (0.42 mW) LC VCO operating at 5.8 GHz and exhibits a phase noise of -120.6 dBc/Hz at 3 MHz offset frequency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.