"Berlin Access", a regional R&D project carried out by six companies and Heinrich Hertz Institute, Fraunhofer
Society, is geared towards low cost solutions for fibre access network architectures (PON and CWDM-PON), ONU
transceivers, and passive fibre components. Close communication with system manufacturers, non-incumbent
carriers, and a city services supplier implementing a local FTTH network supports orientation towards market
demands. In this paper we report on a new FTTH transceiver based on an all-polymer PLC motherboard. The
waveguides exhibit high transmission, strong optical confinement, and large operation temperature range. Low loss
passively adjusted fibre/PLC coupling is achieved by employing a waveguide taper. Downstream/upstream
wavelength separation is accomplished by a directional coupler, or, alternatively, a thin film filter inserted into the
input/output waveguide (the latter approach also allowing for the provisioning of an overlay broadcasting channel).
The horizontal-cavity surface-emitting laser diode, the pin-photodiode (equipped with a thin film filter for improved
crosstalk suppression), and the monitor diode are all flip-chip surface mounted; the light being coupled via 45°
waveguide mirrors. Chip mounting can be done with a commercial fineplacer using semi-active automatic
alignment. Micro-strip lines with impedances adapted to both laser and photodiode are fabricated on the basis of the
PLC films. The polymer motherboard integration scheme offers compact transceiver optical subassemblies and lends
itself favourably to highly automized, low cost manufacturing with high yield. Extended functionalities like loss of
light alarm or concepts for colourless CWDM ONUs can be easily realized with this concept.
Photoreceivers based on InP are becoming increasingly important for 40 Gbit/s telecommunication systems operating at the wavelength of 1.55 micrometers . Due to the monolithic integration, they are advantageous in respect of high-speed performance, small size and cost saving in high-frequency packaging. Research groups worldwide are engaged in developing such OEIC's, with varying architectures and types of the components. Our broadband photoreceiver OEIC consists of a waveguide-integrated GaInAs p-i-n photodetector and a distributed amplifier. The 5*20 micrometers sized photodetectors, with a responsivity of 0.4 A/W, reveal a 3 dB cut-off frequency of 70 GHz. The electrical distributed amplifier is made of our high-electron mobility transistors. The HEMT devices with gate lengths of 0.25 micrometers exhibit cut-off frequencies fT and fmax of up to 100 and 250 GHz, respectively. The integrated photoreceivers are characterized on-after using a heterodyne-measurement setup and finally packaged into modules for system experiments. On recently fabricated wafers, the receivers show a bandwidth of 40 GHz, whereas the amplifiers alone even exhibit values as high as 43 GHz, with gain ripple less than 1 dB.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.