A Microelectromechanical Systems (MEMS)-based rapid scanning photoacoustic microscopy (PAM) is available to help life science research in neuroscience, cell biology, and in vivo imaging. MicroPhotoAcoustics (MPA; Ronkonkoma, NY), the only manufacturer and vendor of Optical Resolution (OR)-PAM systems, has developed a commercial PAM system with switchable optical and acoustic resolution (OR- and AR-PAM). To achieve real-time imaging capability without sacrificing high signal-to-noise ratios (SNRs), a 2-axis water-proofing MEMS scanner made of flexible polydimethylsiloxane (PDMS) was demonstrated by collaboration with Pohang University of Science and Technology (South Korea) that promises to dramatically increase the system’s imaging speed. This flexible scanner results in a wide scanning range and a fast imaging speed (5 B-scan images per second). Equipped with different excitation sources, in vivo PA images of microvasculatures in a mouse ear was obtained. The lateral and axial resolutions of the OR-PAM system are 4.38 μm. It is expected that this MEMS-based fast OR-PAM system can be significantly useful in both preclinical and clinical applications. With the continuation of new technological advancements and discoveries, MPA plans to further advance PAM to achieve faster imaging speed, higher spatial resolution at deeper tissue layer, and address a broader range of biomedical applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.