In this work, we utilized a unique polyhistidine peptide-DNA to conjugate with DHLA-capped QD625 (QD625) and different lengths of ssDNAs which were complementary to different parts of polyhistidine peptide-DNA to conjugate with Tb, and therefore, Tb are located away from the surface of QD with the length of polyhistidine peptide in addition of the length of ssDNA of 0, 2, 4, 6, 10 and 14 bases, or the lengths of dsDNA of 10, 14, 18, 22 and 26 base pairs, respectively. The lifetime of QD became longer and longer as Tb was moving away from QD. The distances calculated from Tb and QD channels by fitting were in an excellent agreement with the model that demonstrated temporal multiplexing FRET using a single Tb-QD FRET pair is successfully developed and can be used as biosensor.
The importance of microRNA (miRNA) dysregulation in the development and progression of diseases has made these short-length nucleic acids to next generation biomarkers. Tb-to-QD Förster resonance energy transfer (FRET) has several unique advantages over organic dye-based FRET systems for biomolecular sensing. Large Förster distances (6-11 nm) offer much high FRET efficiencies, exceptionally long Tb excited-state lifetimes (ms) enable time-gated detection void of autofluorecence background, and the narrow, symmetric, and tunable emission bands of QDs provide unrivaled potential for multiplexing. Here we report a rapid and homogeneous method to sensitively detect three different miRNAs (hsa-miR-20a-5p, hsa-miR-20b-5p, and hsa-miR-21-5p) from a single 150 µL sample based on multiplexed FRET between a luminescent Lumi4-Tb complex and three different QDs. The biosensing approach exploits both base pairing and stacking. Careful design and optimization of sequence lengths and orientations of the QD and Tb-DNA conjugates was performed to provide maximum selectivity and sensitivity for all three miRNA biomarkers. The assays work at room temperature and were designed for their application on a KRYPTOR diagnostic plate reader system.Only 30 min of sample incubation and 7.5 s of measurement are required to obtain ca. 1 nM (subpicomol) detection limits. We also demonstrate precise multiplexed measurements of these miRNAs at different and varying concentrations and the feasibility of adapting the technology to point-of-care testing (POCT) in buffer containing 10% serum. Our assay does not only demonstrate an important milestone for the integration of quantum dots to multiplexed clinical diagnostics but also a unique rapid miRNA detection technology that is complimentary to the rather complicated high-throughput and high-sensitivity approaches that are established today.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.