Drop point measurement precision is one of the core indexes to evaluate the combat effectiveness of weapons. With the development of experimental equipment, the experimental training venue has been expanded to the far sea. Due to the little known data in the far sea area and the measuring area, the measurement methods are limited. In response to the characteristics of the high seas, this paper proposes a method of mounts an optoelectronic pod on a drone and utilizes two drones for collaborative intersection measurement, achieving high-precision landing point measurement and high reliable data acquisition rate. This paper provides a detailed comparison between the traditional H-E-A single station angle measurement and distance measurement methods, the collinear equation based non ranging information positioning method, and the dual aircraft intersection positioning measurement principle combined with RLS filtering algorithm. At the same time, this paper analyzed various factors that affect the accuracy of positioning measurement. Through actual measurement verification of simulated targets, this method achieved a drop point measurement accuracy of 2m within a range of 3Km and a measurement accuracy of over 95%, which is significantly improved compared to traditional methods. The method provides data support for evaluating weapon effectiveness and obtaining field situation, and can also serve as auxiliary means for personnel search and rescue, debris search, etc., greatly improving the fusion ability of multidimensional data and enhancing the independent innovation and support ability of far sea measurement equipment.
The optical frequencies band is used as information carrier to realize laser communication between two low-orbit micro-satellites in space which equipped with inter-satellite laser communication terminals, optical switches, space routers and other payload. The laser communication terminal adopts a two-dimensional turntable with a single mirror structure. In this paper, the perturbation model of satellite platform is established in this paper. The relationship between the coupling and coordinate transformation of satellite disturbance is analyzed and the laser pointing vector is deduced. Using the tracking differentiator to speed up the circular grating angle information constitute speed loop feedback, which avoids the problem of error amplification caused by the high frequency of the conventional difference algorithm. Finally, the suppression ability of the satellite platform disturbance and the tracking accuracy of the tracking system are simulated and analyzed. The results show that the tracking accuracy of the whole system is 10μrad in the case of satellite vibration, which provides the basis for the optimization of the performance of the space-borne laser communication control system.
In the application of space satellite turntable, the design of balance wheel is very necessary. To solve the acquisition precision of Brushless DC motor speed is low, and the encoder is also more complex, this paper improves the original hall signal measurement methods. Using the logic device to achieve the six frequency multiplication of hall signal, the signal is used as speed feedback to achieve speed closed-loop control and improve the speed stability. At the same time, in order to prevent the E.M.F of BLDC motor to raise the voltage of the bus bar when reversing or braking, and affect the normal operation of other circuit modules, the analog circuit is used to protect the bus bar voltage by the way of energy consumption braking. The experimental results are consistent with the theoretical design, and the rationality and feasibility of the frequency multiplication scheme and bus voltage protection scheme are verified.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.