Vegetation is the essential cornerstone of ecosystem cycling, Leaf area index (LAI) is a key parameter to characterize vegetation growth statue. In this study, Jiangsu province as an important coastal province was chosen as the study area, the finished product data of LAI with 500-meter resolution acquired from MODIS sensor were used to reflect the vegetation statue variation and assess the ecological environment. The variation of the mean LAIs in the whole year, in the withering period and in the flourishing period of 2005, 2008, 2011, 2014, 2017 were explored, their spatial distributions were mapped, the stability and trend of vegetation variation were assessed respectively based on the coefficient of variation (CV) and variation rate (VR), the future vegetation statue was simulated by integrating Cellular Automata model and Markov model. Results showed that the mean LAI values in above three periods of 2017 were respectively 0.82, 0.34 and 1.6. From 2005 to 2017, the variation of the mean LAI values was flat except that in flourishing period, their spatial distributions were similar at the same period, northern vegetation statue was better than that in the south especially in the flourishing period. The stability in the whole year was the best of three periods, that in suburban areas was generally better than that in urban areas. Stable trend dominated Jiangsu province all the time, the vegetation in the flourishing period was significantly fluctuant. The vegetation would generally show an improving trend in future six years after 2017.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.