KEYWORDS: Bridges, Analytical research, Error analysis, Data modeling, Safety, Reliability, Received signal strength, Time metrology, Earth sciences, Statistical analysis
Large-scale bridges are among the most important infrastructures whose safe conditions concern people’s daily activities and life safety. Monitoring of large-scale bridges is crucial since deformation might have occurred. How to obtain the deformation information and then judge the safe conditions are the key and difficult problems in bridge deformation monitoring field. Deflection is the important index for evaluation of bridge safety. This paper proposes a forecasting modeling of stepwise regression analysis. Based on the deflection monitoring data of Yangtze River Bridge, the main factors influenced deflection deformation is chiefly studied. Authors use the monitoring data to forecast the deformation value of a bridge deflection at different time from the perspective of non-bridge structure, and compared to the forecasting of gray relational analysis based on linear regression. The result show that the accuracy and reliability of stepwise regression analysis is high, which provides the scientific basis to the bridge operation management. And above all, the ideas of this research provide and effective method for bridge deformation analysis.
This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.
In this paper, according to the characteristics of the grey forecast method and the neural network, constructed the parallel grey neural network model(PGNN) and apply to forecast a tunnel monitoring point’s settlement displacement data based on Nanjing metro. The results showed that the prediction accuracy of PGNN is significantly higher than that of unitary grey and neural forecast method. proves that the effectiveness of PGNN in the tunnel settlement prediction. Keywords: Tunnel settlement, grey model, neural network model, prediction
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.