Since the discovery, that a tightly focused femtosecond laser beam can induce a highly localized and permanent refractive index change in a wide range of dielectrics, ultrafast laser inscription has found applications in many elds due to its unique 3D and rapid prototyping capabilities. These ultrafast laser inscribed waveguide devices are compact and lightweight as well as inherently robust since the waveguides are embedded within the bulk material. In this presentation we will review our current understanding of ultrafast laser - glass lattice interactions and its application to the fabrication of inherently stable, compact waveguide lasers and astronomical 3D integrated photonic circuits.
The development of an Yb-doped distributed Bragg reflector (DBR) waveguide laser fabricated in phosphate glass using the femtosecond laser direct-write technique is reported. The laser has the slope efficiency of 31% with the output power up to 81 mW at a pump power level of 378 mW. A theoretical model for the waveguide laser (WGL) is presented which gives emphasis to transverse integrals to investigate the energy distribution in a homogenously doped glass which is opposed to the fiber laser. The model was validated with experiments comparing a DBR WGL, and then used to study the influence of distributed rare earth dopants on the performance of such lasers. Approximately 15% of the pump power was absorbed by the doped “cladding” in the femtosecond laser inscribed Yb doped WGL case.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.