In this paper, a transient plasma is produced by focusing the 1064 nm radiation from a Q-switched Nd:YAG onto the one-yuan coin at room temperature in air at atmospheric pressure. Using the iterative Boltzmann algorithm, the plasma electron temperature of the one-yuan coin is calculated as 28144 K. Experiments show that the correlation coefficient increases from 0.197 to 0.997 as the number of iterations increases. Experimental results show that the laser induced one-yuan coin plasma meets the LTE model.
Mg doped ZnO (MZO) thin films were prepared by magnetron sputtering and laser induced breakdown spectroscopy (LIBS) were characterized by Q-switched nanosecond 1064nm Nd:YAG laser pulse. Element characteristic spectral lines from MZO thin films with Mg concentration of 0.1 at%, 0.26 at% and 0.49 at% are illustrated by LIBS system. The results show that Mg (I) emission lines are observed corresponding the relatively high excitation with increasing Mg doped concentration. It can be mainly interpreted as more crystallization planes produced by high Mg doping concentration radiate different atomic spectral lines. The results are in relative agreement with XDR patterns. We calculated the electron density of 8.08×1022 cm-3, 7.70×1022 cm-3 and 7.99×1022 cm-3 inferred by measuring the Starkbroadened line profile. The electron temperature of 21875.85 K, 42941.49K and 28985.51K was determined using the Boltzmann plot method through the acquired data.
Mg doped ZnO thin films were prepared by magnetron sputtering and were irradiated by linearly polarized femtosecond laser pulse. Scanning electron microscopy (SEM) characterizations illustrated that regularly arranged nanoripples appeared on the ablation area with the period perpendicular to the polarization direction in the range of 250 nm~570 nm, but parallel to the polarization direction in the range of 2.2 µm~2.5 µm. The redshift of Raman peaks was observed at the central ablation area of the nanoripples, while, both blueshift and redshift were found at the edge area, which could be ascribed to the defects as well as the nanoripple structure.
We derive and calculate numerically laser linewidth by means of the laser rate equation in an extending diode laser
cavity provided by an end reflector. We found that narrow linewidth is closely connected with phase modulation and
frequency modulation. The numerical simulation shows the dominance of effect over another depends on inherent factors
such as the α coefficient, bandwidth of laser, length of external cavity, reflective coefficient etc.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.