When Potassium Dihydrogen Phosphate (KDP) crystal is irradiated by nanosecond laser with fluences exceeding its damage threshold, laser-induced damage occurs in the bulk or on the surfaces of crystal components. Such damage process is a multi-physical coupling process which is composed of energy deposition stage, temperature/pressure rising stage and subsequent micro explosion stage. So far, great efforts have been made in modeling the energy deposition and temperature/pressure rising stages of the damage process, but little attention has been paid on the subsequent micro explosion event. As a result, it is still impossible to reproduce the laser damage phenomena such as damage crater formation and shockwave propagation with the existing damage models. To address this concern, equivalent explosion simulation model for studying the laser-induced damage process of KDP crystals has been constructed by finite element method (FEM). According to the model, explosion energy leading to damage, formation of damage craters and propagation of shockwave can be obtained. Moreover, laser damage experiments combined with time-resolved techniques have been utilized to investigate the impact of laser fluences on the shockwave speed. Experiment results agree well with the simulated phenomenon, which has proved the validity of the simulation model.
Utilized the feature of wide bandgap semiconductor of MgZnO, researched and developed a kind of Mid-Ultraviolet-Band(MUV) ultraviolet detector which has passed the simulation experiment in the sun circumstance. Based on the ultraviolet detector, it gives out a design scheme of gun-shot detection device, which is composed of twelve ultraviolet detectors, signal amplifier, processor, annunciator , azimuth indicator and the bracket. Through Analysing the feature of solar blind, ultraviolet responsivity, fire feature of gunshots and detection distance, the feasibility of this design scheme is proved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.