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ABSTRACT 
 
Due to the costliness of destructive evaluation methods for assessing the aging and shelf-life of missile and rocket 
components, the identification of nondestructive evaluation methods has become increasingly important to the Army.  
Verifying that there is a sufficient concentration of stabilizer is a dependable indicator that the missile’s double-based 
solid propellant is viable.  The research outlined in this paper summarizes the Army Aviation and Missile Research, 
Development, & Engineering Center’s (AMRDEC’s) comparative use of nanoporous membranes, carbon nanotubes, and 
optical spectroscopic configured sensing techniques for detecting degradation in rocket motor propellant. The first 
sensing technique utilizes a gas collecting chamber consisting of nanoporous structures that trap the smaller solid 
propellant particles for measurement by a gas analysis device. In collaboration with NASA-Ames, sensing methods are 
developed that utilize functionalized single-walled carbon nanotubes as the key sensing element.  The optical 
spectroscopic sensing method is based on a unique light collecting optical fiber system designed to detect the 
concentration of the propellant stabilizer. Experimental setups, laboratory results, and overall effectiveness of each 
technique are presented in this paper.  Expectations are for the three sensing mechanisms to provide nondestructive 
evaluation methods that will offer cost-savings and improved weaponry health monitoring. 
 
 

1. INTRODUCTION 
 
It is common knowledge that (over a period of time) the chemical, electrical, and mechanical properties of 

missiles and rockets can change, degrade, and eventually result in the units becoming unusable.  Throughout the life 
cycle of military armaments, weaponry health surveillances are implemented in order to evaluate the properties, 
characteristics, and performance capabilities of the hardware.  The functionality of missiles and rockets are often 
evaluated by being fired or decomposed at routine time-frames after manufacturing and after prolonged storage.  It is 
extremely costly to utilize destructive testing for determining long-term rocket motor aging and shelf-life  

 
The main chemical compositions of solid propellant include nitrate (NO2), carbon (C) and sulfur (S).  During 

long-term (e.g., years of) storage of rockets/missiles, the compositions of the propellant can change due to the chemical 
reactions among the propellant ingredients, as well as the reaction with the ambient environment (e.g., O2).  
Degradations associated with the propellant may include depletion of propellant stabilizer, materials cracking, and 
material/inert surface de-bonding.  In order to ensure a successful firing of the rocket/missile, it is critical to be able to 
monitor the status (i.e., health) of the propellant and ensure proper propellant composition at the time of use by the 
warfighter.  The optimal sensing system should be capable of nondestructively evaluating propellant degradation, rocket 
motor off-gassing, and measure (in real-time) the current percentage of propellant stabilizer.   

 
Based on the fact that double-base propellants have minimum smoke signature and low manufacturing cost, 

these propellants [containing nitrocellulose (NC) and nitroglycerin (NG)] are widely used in many missile systems (such 
as Hydra 70 rocket systems aboard Apache helicopters).  However, due to the slow chemical reaction between the 
stabilizers [e.g., 1,2,4-Butanetriol trinitrate (BTTN), 2-Methyl-4-nitroaniline (MNA)] and NOx released by NC and NG, 
the stabilizers are gradually depleted (the so called aging effect).  Once the concentration of stabilizer is below a certain 
threshold level (e.g., 0.5%), the propellant is no longer safe to use.  Thus, it is critical to monitor the aging effect of 
double base propellants. 
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The US Army AMRDEC is continuously investigating methods to assess the degradation of the solid propellant 

that is used in rocket motors [1, 2].  Innovative methods to nondestructively evaluate the energetic materials that make 
up rocket motor propellant are of great interest to the Army and researchers at the AMRDEC.  The researchers are 
working to subsequently develop a sensing system that can partially become a lab-on-a-chip component.  The resulting 
systems can be deployed across a wide spectrum of hardware platforms for environmental monitoring and ensuing 
integration into weaponry health monitoring devices.  The overall program can be cost-savings to the Army while 
providing a timely approach to enhance the Army's methodologies for measuring both propellant off-gassing and 
stabilizer depletion.  Expectations are for the resulting sensor system to enhance the warfighters' ability to 
simultaneously detect a greater variety of analytes.   
 
 

2. NANOPOROUS MEMBRANE SENSORS  
 

 The sensing technique described in this section utilizes a nanoporous alumina membrane as the filtering 
component of a sensing device that detects gases generated during the degradation of the solid rocket propellant.  The 
nanoporous alumina membrane not only filters the gas molecules, but can accumulate them for estimating the life of 
propellant’s stabilizer.  During the propellant’s degradation process, gases such as CO, CO2, NO, NO2, and N2O are 
released, so the sensing method must be able to distinguish between the several molecules present; because, only some of 
the molecules are indicators of the propellant’s health.  The rate of evolution of N2O, for example, is a direct indicator of 
the available amount of stabilizer that remains in the propellant.  Figure 1 shows the production of gas before and after 
the stabilizer is depleted; the time scale is on the order of years [1, 2].  As N2O is generated by the degrading rocket 
propellant, the stabilizer binds to the N2O such that the N2O is neutralized; however, once the stabilizer is depleted the 
amount of N2O increases exponentially.   
 

 
Figure 1.  The production of gas from a degrading propellant is shown in relationship to the depletion of a stabilizer like MNA.  The 

time frame is on the order of years. It can be seen that after the cross-over gas generation increases exponentially since the stabilizer is 
nearly depleted. 

 
 

The gas sensor developed uses a nanoporous membrane to trap particles from rocket motor propellants. The 
average pore size in the nanoporous alumina is ~250 nm, which was verified by SEM (Figure 2) [3].  The nanoporous 
membrane is able to trap particles that are larger than the pores while smaller gas particles can pass through.  The 
experimental setup shown in Figure 3(a) simulates the gases passing from the motor through the nanoporous membrane.  
The mechanism for filling the gas collecting chamber is the micro pump connected to the gas sensor such that the 
ambient air is pumped out of the gas collecting chamber, which forcibly brings gas through the nanoporous membrane 
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[Figure 3(b)].  The nanoporous membrane filters the gases travelling from the tubular chamber into the gas collecting 
chamber when the ambient air is pumped from the gas collecting chamber by means of a micro pump [Figure 3(a)].  
Furthermore, the micro pump can blow inert gas (e.g., argon, helium, neon, krypton, xenon, radon, sulfur hexafluoride, 
nitrogen, and combinations thereof) into the gas collecting chamber and through the nanoporous membrane to flush the 
accumulated particles.  As the ambient air is pumped out of the gas collecting chamber, gas from the solid propellant can 
be channeled to the gas analysis device with the help of a baffle by reducing the pressure of the chamber (via a micro 
pump) when the valves are open.  In addition, there is a gas analysis device (e.g. Fourier Transform Infrared gas 
spectrometer) connected to the gas collecting chamber to measure the types and concentration levels of gases that travel 
through the nanoporous membrane and to collect in the gas chamber.  Gas sensors are used to measure the concentrations 
of the gases within the chamber.  Several different types of gas sensors can be employed (including the one based on IR 
absorption spectrum and/or chemical reductions).  

 

 
Figure 2. SEM image of nanoporous alumina membrane. The average pore size is ~250 nm. 

 
 In order to test the gas sensor concept, a gas mixture is allowed to flow into the chamber and is collected by the 
nanoporous membrane for analysis.  Two types of related, less toxic gases (CO2 and N2O) were tested.  Figure 4 shows 
the experimentally measured IR absorption spectrum displayed by the Fourier Transform Infrared (FTIR) spectrometer, 
which clearly shows major IR absorption peaks for both gases.  These experimental results demonstrated the feasibility 
of the nanoporous alumina membrane sensor approach.  In order to verify that detection can be achieved at the required 
level of sensitivity, the concentration of N2O gas of the larger chamber was gradually reduced to 1 ppm.  A Bacharach’s 
trace gas analyzer was used to monitor the concentration of N2O in the larger gas chamber.  Afterwards, the IR 
absorption level associated with the small gas chamber was measured, as shown in Figure 5.  Absorption peaks for N2O 
could still be clearly observed, which confirms the ppm level of sensitivity and selectivity. 
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Figure 3. (a) Experimental setup for testing the nanoporous membrane. (b) The nanoporous alumina membrane. 
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Figure 4. Experimentally measured absorption spectrum of CO2 and N2O. 

 

 
Figure 5. Experimentally measured absorption spectrum N2O at 1 ppm. 

 

 
3. CARBON NANOTUBE SENSORS  

 
 The sensing technique described in this section utilizes carbon nanotubes’ electrical characteristics to detect the 
presence of gas molecules.  Carbon nanotubes have been studied for use in sensor applications [4-6].  The gas particles 
that interact with the CNT cause a charge transfer which changes the electrical resistance [4].  The viability of propellant 
can be detected based on changes in electrical resistance in the sensor.  Multi-channel single-walled carbon nanotubes 
(SWCNT) sensor arrays, originally developed by researchers from the National Aeronautics and Space Administration 
(NASA) Ames Research Center (ARC), have been used as the baseline sensor for AMRDEC’s propellant degradation 
research [7,8].   The SWCNT sensor array [Figure 6.  (a) Multi-channel sensor array (NASA-AMES)Figure 6(a)], has 
approximately 32 individually functionalized CNT sensor elements for simultaneously sensing up to 32 different 
analytes or targeted chemical agents, such as including propellant off-gassing.   
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Figure 12. Back scattered spectra of M9 propellant samples with (a) 0%, (b) 0.45%, and (c) 0.7% MNA. 
 
 For the next experiment, 1% carbon black is used in samples with the same percentages of MNA to simulate the real 
propellant used in the missile system.  Figure 13 shows the pictures of three samples used in the experiment.  Figure 14 
(a), (b), and (c) show the experimentally measured back scattered spectra of M9 propellant with concentration levels of 
stabilizer MNA 0% + 1% carbon black, 0.45% + 1% carbon black, 0.7% MNA + 1% carbon black, respectively [3].  For 
each sample the peaks are at the wavelengths 472.59 nm and 531.91 nm; the peak ratios are 5.11, 1.62, and 0.35 for the 
0%, 0.45%, and 0.7% MNA samples, respectively.  Again, it can be clearly seen that there is a dramatic change in the 
ratio between the signal intensity of blue light (473 nm) and green light (532 nm).  The signal intensity of blue light is 
strongest at 473 nm when there are no MNA.  The signal intensity of blue light decreases as the concentration level of 
MNA increases due to the heavy absorption of MNA at UV/blue spectral region.  Thus, the concentration level of MNA 
can be measured even in the case with carbon black. 

 

 
Figure 13. M9 propellant samples with carbon black added. 
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(c) 

Figure 14. Back scattered spectra of M9 propellant with 1% carbon black added to the (a) 0%, (b) 0.45%, and (c) 0.7% MNA samples. 
 

5. SUMMARY  
 
Ongoing AMRDEC research and development of weaponry health monitoring techniques and devices for use in missile 
applications have been presented.  Three different design approaches for assessing the aging and shelf-life of missile and 
rocket components have yielded promising results.  Sensing techniques for the detection of rocket motor off-gassing, as 
well as for toxic industrial chemicals, have been successfully demonstrated via laboratory experiments.  Preliminary 
results are summarized below for each sensing method.  

Nanoporous Alumina Membrane Sensors 
• Utilized nanoporous membrane to filter and compile varying propellant off-gassing analyte 
• Successfully detected cumulative amounts of various rocket motor propellant ingredients 
• Successfully obtained critical experimentally measured absorption spectrum of CO2 and N2O 
• Effectively demonstrated the feasibility of using nanoporous membrane sensors for determining propellant 

degradation 
Carbon Nanotube (CNT) Sensors 

• Successfully demonstrated the usefulness of the CNTs for sensing propellant off-gassing 
• Significant designs for CNT sensors that detects gases based on changes in the electrical properties of CNTs 
• Successfully functionalized CNTs in order to ignore any analyte except the targeted analyte 

Fiber Optic Spectroscopy (FOS) Sensors 
• Successfully developed non-invasive fiber optic spectroscopy sensing system to monitor the shelf-life status 

of double-base propellants 
• Successfully tested the FOS missile health monitoring system performance and detected critical analyte 
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