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ABSTRACT 
 

The Robotics Collaborative Technology Alliance (RCTA) seeks to provide adaptive robot capabilities which move 

beyond traditional metric algorithms to include cognitive capabilities [1].  Research occurs in 5 main Task Areas: 

Intelligence, Perception, Dexterous Manipulation and Unique Mobility (DMUM), Human Robot Interaction (HRI), 

and Integrated Research (IR). This last task of Integrated Research is especially critical and challenging. Individual 

research components can only be fully assessed when integrated onto a robot where they interact with other aspects 

of the system to create cross-Task capabilities which move beyond the State of the Art. Adding to the complexity, 

the RCTA is comprised of 12+ independent organizations across the United States. Each has its own constraints due 

to development environments, ITAR, “lab” vs “real-time” implementations, and legacy software investments from 

previous and ongoing programs. We have developed three main components to manage the Integration Task. The 

first is RFrame, a data-centric transport agnostic middleware which unifies the disparate environments, protocols, 

and data collection mechanisms. Second is the modular Intelligence Architecture built around the Common World 

Model (CWM). The CWM instantiates a Common Data Model and provides access services. Third is RIVET, an 

ITAR free Hardware-In-The-Loop simulator based on 3D game technology. RIVET provides each researcher a 

common test-bed for development prior to integration, and a regression test mechanism. Once components are 

integrated and verified, they are released back to the consortium to provide the RIVET baseline for further research. 

This approach allows Integration of new and legacy systems built upon different architectures, by application of 

Open Architecture principles. 
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1. INTRODUCTION 
 

System integration is a challenging problem for any complex system. Various techniques have been developed to 

simplify this process. Open Architecture of hardware and software components enables adding, upgrading and 

swapping of components. Further refinement of the concept adds loosely coupled components communicating 

through well-defined published interfaces. There are currently multiple established and emerging approaches to this 

within DoD depending on program needs such as: Joint Architecture for Unmanned Systems (JAUS) [2], Future 

Airborne Capability Environment (FACE) [3], and Vehicle Integration for C4ISR/EW Interoperability (VICTORY) 

[4].  Within each domain, interoperability is possible due to enforcement of common middleware and data models. 

While systems developed within each of these environments are Interoperable within that domain, achieving 

interoperability between them and with existing legacy investments is again a challenge requiring additional testing 

and verification.  

 

RCTA faces these same issues, with the additional constraint that we wish the researchers to be as productive as 

possible.  Therefore, enforcing common middleware and software frameworks are an impediment as it would take 

valuable research dollars away from the research. Replacing the researchers preferred environment with a new 

system also results in loss of time and program dollars while the new system is learned. As a result, research occurs 

in multiple development environments, using a variety of tools. For example, one of the consortium members is Jet 

Propulsion Labs (JPL) who in the past transitioned RCTA developments to and from other DoD programs such as 

Legged Squad Support System. JPL has over the years developed real-time capable design practices and 

infrastructure to deal with the rigors of other worlds. On the other side of the spectrum are the University researchers 

who use less structured, non-real-time environments such as Robot Operating System (ROS) [5] and Matlab. To 

force JPL to use ROS would result in additional time cost when transitioning research, while forcing graduate 
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students into real-time environments adds complexity to immediate task. Additionally, research environment 

changes based on research area and individual researcher preferences. For example, what is most efficient for 

Intelligence is not necessarily the best toolbox for Perception.  It falls upon Integrated Research aspect of RCTA to 

find solutions which allow all consortium members to collaborate, integrate, and assess the joint technology in a 

single platform, and the data logs for evaluation by the Army Research Labs assessment team. Given integrated 

capability, this team collaborates to develop Integrated Research Assessment (IRA) scenarios consistent with 

transition to fielded solutions. Data from these IRAs are then reviewed to provide feedback to the consortium on 

how it is meeting expectations, documents research maturity, and is used to inform government leadership as to the 

status of the program. There are 4 basic elements to facilitate integration: RFrame, a Common World Model, RIVET 

simulator, and a common ITAR free Integration Platform. 

 

2. RFRAME 

 
The first element of the IR approach is the RFrame middleware layer which provides transport agnostic, data centric 

communications between modular components. RFrame was designed by surveying common interoperability 

approaches to identify common functionality and take into consideration lessons learned from GDLS’s 23 years of 

real-time robotics experience. This survey included transports most common within the robotics community and 

potential transition to DoD programs: RCSLIB[6], DDS[7], JAUS, and ROS. Follow on reviews of LCM[8], 

MsgPack[8], and Protobuf [10] support the initial survey conclusions. This analysis found the following 

characteristics: 

 

 Common use of Interface Description Languages (IDL) and code generation to create communications 

 All the IDLs essentially describe the same structural concepts: classes, sequences, dictionaries, primitive 

types (int, float, bool, etc) 

 IDLs needs to be machine readable (i.e. XML). 

 Each provides the concept of an unique ID for code generated messages. JAUS manually assigns IDs, while 

ROS uses an MD5 sum of the IDL file. 

 Messaging is commonly implemented using a combination of create, read, write, delete API model with 

extensions to enable asynchronous callbacks [26].  

 System modularity is de-facto the approach to Open Architecture and existing robotic systems. We should 

support modularity at the inter-process and intra-process modalities. It should be simple to move modules 

between computing elements. 

 The ability to collect statistics on how the system is behaving internally (such as performance timing, data 

rates) is vital to being able to debug the system 

 Each approach provides similar tools for diagnostics, such as network monitoring, recording and playback. 

 There is a wide variety of definitions of what “real-time” and “real-time” communications means. Two real 

time systems may/will have different latency allowances when delivering data.  

 

During the investigation, the following realizations occurred: 

 Creation of a superset IDL, which allows import of other IDLs is feasible. For example, the system should 

be able to simultaneously communicate JAUS and ROS transports. JAUS supports future transition, while 

ROS simplifies integration of University research.  This would also save time when moving code between 

IDLs due to program requirements. 

 The ability to speak multiple protocols enables a unified logging, playback and configuration infrastructure.  

 Data should be separated from Messaging. JAUS Toolset, for example, implements this concept by 

providing a message wrapper around a data payload.  ROS on the other hand, attaches the message 

metadata into the data structure itself, which increases memory overhead. 

 Message metadata is useful to the client algorithms: time sent, time received, and who sent the message. 

 The potential of code generated data structures to be used internally to simplify development. Removes the 

need to develop separate internal and external interfaces or “bridges”. 

 Addition of data type tracking would allow introspection into the running system. In order to work, 

introspection requires a mechanism to numerically uniquely identify each data structure, and its version. 

 The framework should support hard and soft real-time designs. 
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RFrame is implemented using C++ as dynamically loadable modules from simple core interfaces and common 

utilities such as configuration, transparent logging, thread safety, and data structures such as UUID and Sequence. 

Changing data transport, supporting multiple transports at runtime, upgrading/exchanging functionality, or 

relocating modules between processing elements is a configuration file change not a code change.  Extending 

existing codebases is minimally invasive as RFrame may be integrated as an I/O library meeting the common open, 

close, read, write API model. Being transport agnostic enables modules to be integrated side by side with existing 

components. There is a rich research community and multiple interoperability efforts, each with de-facto, current 

and emerging standards, built on separate messaging and transport protocols, leaving a fractured landscape for 

Integrators to navigate. RFrame enables interoperability between new and legacy systems built upon different 

middleware architectures through the use of a superset Interface Description Language and template based code 

generation. This role is defined in the FACE standard as a “Paradigm Translator”.  

 
     Figure 1: RFrame code generation imports from multiple specification formats into a common XML based IDL; generates 

     serialization for multiple data format & protocols, enabling a data-centric transport agnostic design strategy which reduces 

     development time. 

 

For RCTA, this simply means that RFrame allows each researcher to use their preferred tools as it is simple to 

import their data, create data sets, and provide unified system logs to the government assessment team.  Collaborator 

data are imported into RFrame XML using simple import conversion scripts (figure 1). These scripts will populate 

missing fields of the superset IDL if necessary. For example, if the input IDL contains a manually assigned id, it is 

maintained.  If an ID is not provided, one is auto-generated by hashing the name of the imported structure with its 

namespace. If the IDL requires specialized information for its own protocol, it is also maintained.  For example, 

ROS uses specialized MD5 checksums instead of message id and version numbers. Code generators then produce 

the serialization libraries for each requested transport protocol, which are dynamically loaded at runtime based on 

system configuration. As a result, protocols are transparent to the RFrame native modules minimizing extra 

bridging/interface code. RFrame is therefore data-centric and transport agnostic. The messaging system handles 

logging of all messaging regardless of transport, as well as data playback in simulation mode by using specialized 

modules. For example switching logging between disk and database solutions. All messages are transparently logged 

by default so ensure that all data is available when performing system analysis.  
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     Figure 2: RFrame code generation imports from multiple specification formats into a common XML based IDL; generates  

     serialization for multiple data format & protocols, enabling a data-centric transport agnostic design strategy reducing  

     development time. 
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Structurally, RFrame adopts a layered approach (figure 2). At the lowest level are the Connection Managers such as 

ROS comms and JAUS comms which handle messaging for a specific protocol. Above the protocols is the 

Messaging Manager which provides a single interface to the client modules, and handles message routing to/from 

the Connection Managers and distribution of messages to client callbacks if necessary. RFrame supports both 

callback and non-callback (“direct”) read/write operations in order to support legacy, current, and future design 

patterns. Both the Connection Managers and Messaging Manager adopt a common interface API. Client modules are 

implemented using a MessagingClient, which extends the common interface API to simplify use of these client 

interfaces by taking advantage of the data introspection capabilities created by the code generator. As mentioned 

above, each client is implemented as a dynamically loaded module, and runs within a separate thread of execution. 

To support threading all modules are built around common state machine (construct -> init -> start -> exec main 

loop “once” -> stop -> shutdown ->destruct). This pattern allows RFrame core to handle complexity for the 

developer such as thread safety, module loop period, potential I/O deadlocks during startup/shutdown. This design 

enables an RFrame module to support both hard-real time designs such as the 4D/RCS [11] based GDLS systems, 

and soft-real time designs such as JAUS or ROS.  We are able to interact with non-4D/RCS nodes while maintaining 

our proven real-time concepts. 

 

3. WORLD MODEL 
 

Element two, which is central to our Architecture, is the RCTA Common World Model (CWM) shown in Figure 3. 

The CWM defines and instantiates the Data Model for the RCTA Intelligence Architecture with a data-centric 

approach providing a common, centralized Intelligent Data Store services. The data model was defined by need to 

represent 3 layers of information: Metric, Semantic, and Self. Specific data types within these layers were 

determined by querying RCTA collaborators to determine the best mechanisms to represent the desired data types. 

 

The CWM leverages the transport agnostic capabilities of RFrame to be accessible by the preferred environments of 

RCTA Collaborators.  The modular nature of RFrame makes simplifies integration by providing a stable, consistent 

mechanism for linking disparate system components to update and extend the CWM. This approach was proven 

successful during the Capstone Assessment of the previous RCTA program [14,15,16,17]. The assessment covered 

integration of technology developed over an eight-year research program into autonomous navigation. A week prior 

to the assessment, a vision based water detector [18] was integrated in four hours. Integration included linking 

output of the detector into the world model, defining the water types as obstacles in a configuration file, and 

completing successful live field testing. This integration was considered “low risk” primarily due to the use of the 

proven world model. 

 

 

     Figure 3: High level component layout of the world model “Phase 1” [12]. “Phase 2” is currently active [13] 

 

The world model is divided into three main concepts: Metric (sensor data and aggregates), Semantic Objects (class 

descriptions and instances), and Self Information. An access interface is provided for each of these following the 
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“CRUD” database interface model: Create, Replace, Update, and Delete. Internally, the world model knows how the 

various data sources inter-relate, and when appropriate propagates changes between the three levels. This is why we 

refer to the world model as an “Intelligent” Data Store. It is more than just a database, it provides background data 

aggregation and calculation processes. Self-Information contains data relative to the robot’s “Self”. By encoding 

current capability, component status, task execution state, and their histories, we track information which enables the 

robot to reason and adapt its performance using Meta-Cognition
 
and Machine Learning principles. This allows the 

system to answer questions such as: Where am I? What can I do? What am I commanded to do? and How well am I 

doing it?  

 

The CWM is fully documented. The API, manual, example client programs, and technical support are provided to 

the consortium. More detailed information on the CWM may be found in [12][13]. 

  

4. RIVET SIMULATOR 
 

The third basic element is simulation.  RCTA has developed a Hardware In The Loop (HITL) simulator called 

RIVET to meet the needs of RCTA researchers. RIVET is based on a commercially available 3D Gaming engine, 

and industry standard PhysX high fidelity physics.  
        
Testing with a real robot is required to fully access a robotic capability. While necessary, physical testing is 

expensive: acquiring robots, maintenance, travel costs, range time and possibility of delays (weather, equipment 

failures, over headed vehicles, etc).  Immature algorithms increase these costs. RIVET provides a highly detailed, 

capable environment for sensor and algorithm development, integration and assessment using common off the shelf 

computers. Researchers are able to execute an order of magnitude more runs in the simulator, than would be possible 

with the real robot. This savings of time directly translates to cost savings, increased productivity, and more refined 

algorithms ready for system integration.  RCTA uses RIVET as a “gateway” to placing research onto the physical 

platforms, as well as a regression test mechanism for the integrated system.  

 

 
 
     Figure 4: a) Left: Example RIVET environments. Simulated robots include ground, surface, and air vehicles,  

     b) Right: Example of matched ground truth for Semantic Labeling of the scene showing buildings (orange), windows (cyan),  

     vehicle (lime), doorways (yellow), gas pumps (pink) and wall (purple). 

 

Documented interfaces to RIVET are available through the use of the Basic Operation Level interface (BOLT) 

extension library. BOLT provides simple low level control and sensor interfaces to RIVET, allowing researchers to 

tailor the level of the simulation to their needs.  RIVET installation provides a detailed model of the Fort Indiantown 

Gap CACTF test site, enabling research in a similar environment to real world assessment. Multiple vehicles and 

robot types are included (Figure 4a). Many sensors are also simulated including millimeter wave RADAR, 2D 

Ladar, 3D Ladar, monocular and stereo camera. Recently, Rivet has been upgraded to provide simultaneous ground 

truth for perception algorithms, which enables rapid training of the machine learning based perception algorithms 

while reducing false classifications due to human error.  
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5. INTEGRATION 
 

RCTA as a program recognizes that individual research components can only be fully assessed when integrated onto 

a robot where they interact with other aspects of the system to create cross-Task capabilities which move beyond the 

State of the Art. To address the challenges inherent in integration, we have presented a multi-pronged approach of 

tools: RFrame enables transport agnostic messaging, CWM provides common Data Model and services, and RIVET 

provides a common cost effective initial integration platform.   

  

For field assessment of integrated solutions, the fourth element supporting the RCTA program provides a common 

hardware platform. We are in the process of building 8 of these platforms: 3 fully outfitted to be used for program 

integration and assessment, and 5 basic setups provided to RCTA and ARL collaborators. The base configuration 

consists of a Clearpath Husky platform [23], Hokuyo line scanner [24], navigation unit, and bumblebee stereo 

camera, and a mac-mini running platform mobility control software. The full configuration (figure 5) adds a GDLS 

Adonis hi-dynamic range imager, and a GDLS microLadar 360 Ladar [26], and 3 mac-minis to run researcher 

software.  

 

We are adopting a “rolling integration” solution. As components are integrated and verified to successfully work 

together, they are version controlled and released back to the consortium to enable future research. For example, a 

researcher in path planning algorithms is able to use the latest vetted perception algorithms with RIVET to evaluate 

their research. A designated regression test SIL is being setup to assist with this purpose. 

 

To date the program has performed 4 Integrated Research Assessments. These assessments are designed and 

executed by the ARL assessment team and designed to challenge the integrated system in a statistically sound 

manner. The goal is to find out how the algorithms respond to these scenarios in order to improve the science itself. 

Positive or negative outcomes during the assessment are simply results providing the researchers with data which 

allows them to continue improvement 

.  
     Figure 5: Fully configured research platform.Top shelf: bumblebee stereo (left), GDRS uLadar (center), ADONIS (right).  

     Bottom shelf: gps (left), hokuyo Ladar (center), teleop receiver (right). 
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