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ABSTRACT

Exciton-polaritons in semiconductor microcavities have been studied intensely, both with respect to their in-
triguing fundamental physical properties and with respect to their potential in novel device designs. The latter
requires ways to control polaritonic systems, and all-optical control mechanisms are considered to be especially
useful. In this talk, we discuss and review our efforts to control the polariton density, utilizing optical four-wave
mixing instabilites, and the spin or polarization textures resulting from the optical spin Hall effect. Both ef-
fects are readily observable in the cavity’s far-field emission, and hence potentially useful for optoelectronic and
spinoptronic device applications.
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1. INTRODUCTION

Exciton-polaritons in semiconductor microcavities have been studied intensely both with respect to their in-
triguing fundamental physical properties1–18 (for reviews see for example Refs. [13,17–19]), including polaritonic
Bose condensation, and with respect to their potential in novel device designs.20–23 The latter requires ways
to control polaritonic systems, and all-optical control mechanisms are considered to be especially useful. In the
following, we discuss and review our efforts to control various physical attributes. One of those attributes is the
polariton density, which can be controlled by optical pump and control beams, utilizing optical instabilities that
are based on four-wave mixing processes. Using a double-cavity design, which has two lower-polariton branches,
we are able to pump the system in normal incidence and control the output direction with a combination of
static system parameters and dynamical off-axis control beams. This allows for an efficient directional and low-
energy switching of optical beams. A second example is the control of spin transport phenomena that leads to
polarization patterns (or textures) in the far-field emission. We discuss the control of the so-called optical spin
Hall effect. Utilizing again our double-cavity design, we are able to rotate the spin/polarization texture of the
far field simply by changing the intensity of the pump beam. This effect is based on an optical manipulation of
the polariton-spin orbit interaction, and may lead to novel applications in spinoptronic systems.

A semiconductor double-microcavity consists of two cavities,24 each of which has one or more quantum wells
embedded, as sketched in Fig. 1(a). The cavity photons and the excitons in the quantum wells are coupled and
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Figure 1. (a) A sketch of the semiconductor double-microcavity with a pump beam at normal incidence. Two quantum
wells are embedded inside three distributed Bragg reflectors (DBR), which form two cavities. The (b) A schematic of
the hexagonal intensity pattern spontaneously created by a normally incident light source with intensity above instability
threshold. A two-spot pattern can also be created using different parameters. (c) A schematic plot of the optical spin
Hall effect (OSHE) pattern created by a “+”-circularly polarized source. “x” and “y”-polarized polaritons are spatially
separated due to the polariton spin-orbit interaction.

form exciton-polaritons. For a double-cavity, two upper and two lower polariton branches are formed, which
is in contrast to one upper and one lower polariton branch in the case of a single-cavity. The extra polariton
branches allow resonant frequency windows for the creation of directly pumped polaritons. An optical pump is
in normal incidence to the cavity’s surface. When the pump intensity is above a certain threshold, the nonlinear
scattering of polaritons can lead to spontaneous symmetry breaking and pattern formation. Figure 1(b) shows
a sketch of a possible hexagonal pattern observed in the far-field.

Another possible optical pattern that can be observed and controlled in a double-cavity is the optical spin Hall
effect (OSHE) spin texture.25–31 The OSHE is the formation of polarization/spin pattern of exciton-polaritons
in an optically pumped semiconductor microcavity. The effect arises from the transverse-electric and transverse
magnetic (TE-TM) splitting, which yields a polariton spin-orbit interaction. The spin-orbit interaction leads
to an effective magnetic field that creates an anisotropic polarization texture of polaritons. The OSHE pattern
with a linearly polarized (“x”-polarized) light source was recently shown in experiments,31,32 and is sketched in
Fig. 1(c).

In the following, we will first discuss the theory of cavity photons and excitons in a semiconductor double-
microcavity, and present numerical simulation results illustrating the formation of patterns and their optical
control. In the next section, we will simplify the photon-exciton equations using the exciton-polariton picture
and also formulate a pseudospin model. We will present results for the control of the OSHE pattern at different
pump intensity using both the microscopic theory as well as the pseudospin formulation.

2. PATTERN FORMATION IN SEMICONDUCTOR DOUBLE-MICROCAVITIES

In this section, we describe one of the optical control mechanisms on the polariton patterns in a semiconductor
double-microcavity as demonstrated in Ref. [24]. We start with considering the dynamics of the excitons and
cavity photons in the two cavities. The equations describing the dynamics of the exciton and cavity photon fields
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in the two cavities and quantum wells are
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∓
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Here E±
i is the cavity photon field, and p±i is the exciton field in the ith cavity (i = 1, 2 in a double-cavity) of

plus (+) and minus (−) circular polarization. For cavity photons, HC = −~2

4

(
1

mTM
+ 1

mTE

)
∇2 + ~ωc − iγC ,

and H± = −~2

4

(
1

mTM
− 1

mTE

)(
∂
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)2

. For excitons, HX = − ~2

2mX
∇2 + εx − iγX . ~ωc and εx are the

k = 0 energies of the cavity mode and the 1s exciton, respectively. The two cavities have the same ~ωc and εx
as they are assumed to be identical. mTE and mTM are the cavity photon masses for the TE and TM modes,
respectively. The spin-orbit coupling H± turns two units of spin into two units of orbital angular momentum
and vice versa. It is non-zero when there is splitting in the TE and TM dispersion (mTE ̸= mTM). mX is the
1s heavy-hole exciton mass, which is assumed to be infinite in the range of interest. γC is the cavity loss rate
and γX the exciton dephasing. ΩX is the coupling strength between excitons and cavity photons in each cavity,
and the photon fields in the two cavities are coupled with strength ΩC . R

±
pump,1 and R±

pump,2 are the effective
pump sources in cavity 1 and 2, respectively.

The nonlinear couplings contain two parts: the phase space filling effect among the Fermionic constituents
of the excitons (electrons and holes), denoted by APSF, and the effective interactions T++ and T+−, in the
co-circularly polarized and counter-circularly polarized exciton channels, respectively. Retardation (quantum
memory) effects are neglected due to the quasi-monochromatic excitation conditions.

Steady state far-field patterns are obtained by numerically solving Eqs. (1)-(4) and Fourier transforming the
cavity photon and exciton fields into transverse momentum (k) space. A continuous normally incident pump
source, linearly polarized at 45◦, with intensity above the instability threshold leads to a spontaneous hexagon
formation in k-space, as shown in Fig. 2(b). The hexagon consists of two strong spots and four weaker spots,
with the two strong spots orientated perpendicularly to the polarization of the pump. When the pump is tilted
to the direction perpendicular to the pump polarization, as illustrated in Fig. 2(a), an anisotropy is introduced
to the system. With a sufficiently strong anisotropy, the hexagon is destabilized and a two-spot pattern emerges,
as shown in Fig. 2(c). Note that all detections are in the cross-polarized channel, which is the linear polarization
at 135◦ in this case. Further examples of switching, including using a control beam, can be found in Ref. [24].

3. OPTICAL SPIN HALL EFFECT

To observe the OSHE pattern numerically with a “x”-polarized source, instead of computing the cavity photon
and exciton fields as in Eqs. (1) - (4), we simplify the problem using the exciton-polariton picture taking into
account only the two lower polariton branches, LP1 and LP2, as in:33,34

i~
∂

∂t
ψ±
LP1 = H̃ψ,1ψ

±
LP1 + H̃±,1ψ

∓
LP1 +N±,1 + R̃±,1 (5)

i~
∂

∂t
ψ+
LP2 = H̃ψ,2ψ

+
LP2 +N+,2 + R̃+,2 (6)

Here ψ±
LP1 and ψ±

LP2 are the polariton fields at the lowest polariton branch, LP1, and the second lowest polariton
branch, LP2, in real space, respectively. The k = 0 energies of LP1 and LP2 polaritons are ~ω0,1 and ~ω0,2,
respectively. We also make an assumption that ψLP2−

k = 0 due to the (+) polarized pump at energy equal to

~ω0,2. R̃±,1/2 are the effective source terms on the two lower polariton branches and the assumption leads to

R̃−,2 = 0. Moreover, H̃ψ,1 = − ~2

2MLP1
∇2 + ~ω0,1 − iγ and H̃ψ,2 = − ~2

2MLP2
∇2 + ~ω0,2 − iγ. The spin-orbit
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Figure 2. (a) A schematic illustration of the tilted pump (the tilt angle in the sketch is exaggerated for clarity). (b)
A hexagonal intensity pattern is created by a normally incident polarized pump source, linearly polarized at 45◦, with
intensity above instability threshold. The polarization direction is indicated by the red arrow. The orientation of the
two dominant spots in the hexagon is perpendicular to this polarization angle. The detection is cross-polarized with the
pump, which is linearly polarized at 135◦, in this case. (c) A two-spot pattern is observed when the pump is slightly tilted
perpendicularly to the pump polarization direction, which is indicated by the small yellow arrow.
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inverse sum of the effective TE and TM masses of LP1 and LP2, respectively. The nonlinear terms are
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The coupling between polaritons are modified from the photon-exciton picture with T̃++
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where kres1 =
√
2ML1~ω0,2/~. For detailed derivation please refer to Ref. [34].

Figure 3. (a) The Poincare sphere representation of the pseudospin vector S. The north and south pole correspond
to “+” and “-”-polarized polaritons, respectively, while the positive and negative parts on the “S1”-axis correspond to
“x” and “y”-polarized polaritons, respectively. (b) Numerical results for S1(k) with a “+”-polarized normally incident
source. The “x” (red) and “y” (blue) polarized polaritons are spatially separated into four quadrants in k-space. A further
increase of the pump intensity will lead to a further rotation of the S1(k) pattern.31 The data are normalized such that
the maximum and minimum values are ±1.

Before discussing the numerical simulation results of Eqs. (5) and (6), we introduce the pseudospin model.31,35

The components of the pseudospin vector in k-space Sk are described by the Stokes parameters formed by the
polariton wavefunctions:

S0(k) = |ψLP1+
k |2 + |ψLP1−

k |2

S1(k) = 2Re
[
ψLP1−∗
k ψLP1+

k

]
S2(k) = −2Im

[
ψLP1−∗
k ψLP1+

k

]
S3(k) = |ψLP1+

k |2 − |ψLP1−
k |2, (10)
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where ψLP1±
k is the spatial Fourier transform of ψ±

LP1. The evolution of the pseudospin vector can either be
obtained from the equations of motion for the polariton wave functions as detailed above, or from a phenomeno-
logical pseudospin model, given by the equations31,35

Ṡ(k) = B(k)× S(k)− γSS(k) +R(k) (11)

with the effective magnetic field Bk, the decay term γS and a source term R(k). The pseudospin vector can
be represented in the Poincare sphere as shown in Fig. 3(a). The north and south pole correspond to “+” and
“-”-polarized polaritons, respectively, while the positive and negative parts of the S1 axis correspond to mostly
“x” and “y”-polarized polaritons, respectively. In other words, for a positive S1(k) the polarization state of the
field is mostly “x”, while for negative S1(k) it is “y”.

We perform numerical simulations of Eqs. (5) and (6) with a “+”-circularly polarized light and observe the
far-field polarization texture using S1(k). An example is shown in Fig. 3(b), which consists of four quadrants of
mostly linearly polarized polaritons on the elastic circle. The polarization texture was shown to be rotated with
an increase in pump intensity,31 and in Fig. 4(a) we show the change in polarization of polaritons on the elastic
circles at 0-degree under different pump intensity. Here we define the radial average of the Stokes parameters as

S̄1 =
I0,0 − I90,0
I0,0 + I90,0

S̄2 =
I45,0 − I135,0
I45,0 + I135,0

S̄3 =
I45,π/2 − I135,π/2

I45,π/2 + I135,π/2
(12)

where

Iϕk,η =

∫ k2

k1

kdk|ψLP1x
k cosϕk + ψLP1y

k eiη sinϕk|2 (13)

is the radially integrated polariton density measured at angle ϕk. The range between k1 and k2 is determined
by the thickness of the elastic circle so that further increase in the integration range does not change the Iϕk,η.
Here, corrections to the Stokes parameters due to the small deviation of the emission from the surface normal
has been neglected.

Figure 4. (a) The polarization ellipse of the far-field emission from polaritons at zero degrees on the elastic circle for low
and high pump intensity. The azimuth angle of the polarization is rotated with a higher pump intensity. At the same
time, the polarization is closer to a circle, i.e. the ellipticity is closer to π/4, with a higher pump intensity. (b) The three
radially integrated Stokes parameters S̄1, S̄2 and S̄3 on the elastic circle at zero degrees for low and high pump intensities.
The increase in S̄1 and decrease in S̄2 effect a change in the azimuth angle.
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The ellipticity ϵ and the azimuth angle θaz of the polarization of polaritons plotted in Fig. 4(a) is then given
by

ϵ = (1/2) sin−1

(
S̄3/

√
S̄2
1 + S̄2

2 + S̄2
3

)
(14)

θaz = (1/2) tan−1
(
S̄2/S̄1

)
. (15)

The results in Fig. 4(a) show that the azimuth angle of the polarization is rotated and the polarization is closer
to a circle, i.e. ellipticity is closer to π/4, with a higher pump intensity. These changes in the azimuth angle and
ellipticity can be understood by studying the changes of S̄1/2/3 with low and high pump intensity. The values of
S̄1/2/3 are shown in Fig. 4(b) for the two cases, and the change of ellipticity is coming from the increase of S̄3 in
the high intensity case. From Eq. (14), a higher S̄3 weighting leads to a ellipticity ϵ closer to π/4. The change
in azimuth angle comes from the combined effect of the increase in S̄1 and decrease in S̄2.

4. CONCLUSION

In conclusion, we have discussed two kinds of all-optical pattern control in a semiconductor double-microcavity,
namely the hexagonal/two-spot intensity pattern and the OSHE spin texture, and showed that these patterns
could be optically manipulated. In the intensity pattern case, a small tilt of pump can destabilize the hexagonal
pattern and lead to the formation of a two-spot pattern. In the OSHE, increasing the pump intensity can lead
to a rotation of the spin texture. These control mechanisms could be the fundamentals of future all-optical
computation and communication utilizing polaritons in semiconductor microcavities.
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