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Abstract— The quest for real-time high resolution is of prime 
importance for surveillance applications specially in disaster 
management and rescue mission. Synthetic aperture radar 
provides meter-range resolution images in all weather conditions. 
Often installed on satellites the revisit time can be too long to 
support real-time operations on the ground.

Synthetic aperture lidar can be lightweight and offers 
centimeter-range resolution. Onboard airplane or unmanned air 
vehicle this technology would allow for timelier reconnaissance. 

INO has developed a synthetic aperture radar table prototype 
and further used a real-time optronic processor to fulfill image 
generation on-demand. The early positive results using both 
technologies are presented in this paper. 

Index Terms—Synthetic aperture lidar, synthetic aperture 
radar, real-time, optronic processor

I. INTRODUCTION

In multiple remote sensing applications there is an increasing 
need for information of higher quality. Though quality is 
somewhat a subjective notion, it often translates into high 
resolution imaging capabilities. The ultimate goal of remote 
sensing is to have more detailed knowledge to better diagnose 
an observation or situation. For search and rescue teams, for 
instance, a better understanding of the actual state of a region in 
the midst of a natural disaster will increase the efficiency of 
rescue priorities identification and of viable routes to bring help 
to communities in need.

Synthetic Aperture Lidar (SAL) is an emerging technology 
that provides active day and night imaging capabilities within a 
compact payload. SAL is derived from its radar counterpart 
Synthetic Aperture Radar (SAR). It provides a means to 
overcome the limitation of a small collecting aperture through 
synthesis over a large collecting distance. Due to its small 

wavelength, 4000 times smaller than SAR, SAL could offer 
very high resolution within a small payload.

In this perspective, INO has recently developed a tabletop 
prototype of a SAL imager. INO has also, in partnership with 
ESA, successfully developed an optronic SAR processor for 
the real-time generation of SAR images from the 
ENVISAT/ASAR instrument. This SAR, now SAL, processor, 
has been used to successfully process in real-time raw data 
from the SAL system to form a SAL image.

This strategy combines the best of two worlds. SAL 
sensors, due to their high pulse repetition rate, will generate 
very large data throughput that must be processed in real-time 
to make any observation/surveillance system useful. 
Combining a SAL head to an optronic SAL processor provides 
a mean to achieve, within a compact lightweight payload, high 
resolution imaging in a timely fashion. This paper reviews 
results obtained with the SAL prototype and the SAL optronic
processor.

II. SYNTHETIC APERTURE SYSTEMS

In remote sensing, conventional imagers must often 
sacrifice ground resolution for system compactness since in 
these systems the resolution is limited by the aperture size.  A 
technique to obviate the diffraction limitation of an imaging 
system’s real aperture is known as Synthetic Aperture (SA) and 
has been successfully employed at radio frequencies on both 
space-borne and airborne platforms for many years. These 
active imaging systems (Synthetic Aperture Radars or SARs) 
take advantage of the platform motion to coherently sample 
multiple sections emulating an aperture much larger than the 
physical one. The backscattered data returns are then 
coherently reconstructed to produce the final high resolution 
SAR image. Typical SAR systems operate at centimeter 
wavelengths, have antenna sizes of close to ten meters and 
produce images with ground resolutions less than ten meters. 
Synthetic Aperture Lidar (SAL) systems [6][7][8][9][10] that 
would operate at wavelengths one thousand times smaller than 
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SAR systems thus could potentially offer ima
resolutions of tens of millimeters within a co
These kind of resolutions would provide cri
information for disaster management teams.
data acquired by a synthetic aperture lidar prot
processed with a optronic processor to demo
elements of an on-demand high-resolution ima

Typical SAR imaging systems consist 
operations employing different technologies
acquisition, illustrated in Figure 1 is perform
antenna that acts as both the transmitter an
image reconstruction is either digital where the
though mathematical algorithms such as R
Chirp-Scaling on computers or optronic (b
holography [1][2][3] and illustrated in Figure 
data are coherently illuminated and lenses are
beam’s path focusing the raw data to form the
turn captured by a digital camera or on film. 

Fig. 1. Illustration of a SAR image acquisitio
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III. SYNTHETIC APERTURE LIDAR SENSING AN

A. Fiber-optic SAL image acquisition system

A first laboratory SAL image acquisition s
designed and built. It is illustrated in Figure 
Figure 5. The purpose of the prototype w
feasibility of the concept of sysnthetic ape
system is based on an eye-safe tunable laser 
μm with an average output power of 8 mW. Th
was set to 0.6sec and the pulsed bandwidth
optical fiber used was a single mode SMF-28.

The laser beam is sent onto a target, t
systems, and the echo is captured by the sam
distance between the lens and the target is 30 
part of the illumination beam is used for refere
a second path and reflected through the use of 
back to the source. This reference plays a role 
oscillator found in SAR systems. The beam c
target is combined to the reference beam and
pattern is recorded. This becomes the raw d
further processed with the SAR, now SAL, op
Typically the optical length of the referenc
paths will be balanced i.e. mostly similar. 

The target, shown in the bottom section
constructed by hand from reflective tape, glue
and mounted on a translation stage. The trans
controlled by the executable Labview pro
illustration of Figure 6 shows the size of a tar
the size of the laser beam profile. The beam
larger than the target illustrating the point tha
aperture techniques, features much sm
illumination spot-size can be resolved.
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The data acquired by the SAL set-up is processed using the 
optronic SAR processer designed for ENVISAT/ASAR data. 
No changes were made to the optronic processor; only a 
straightforward scaling was performed to change raw data focal 
lengths.

The SAL raw data is thus input on the SLMs, propagated to 
the processor, and the reconstruction is captured on the camera 
located at the exit of the optronic processor. Figure 7 shows a 
comparison between a theoretical SAL image (simulated image 
acquisition and processing, top) and the real processed SAL 
image (data taken with the fiber-based set-up and processed 
with the optronic processor, bottom ). The optronically 
processed real image shows good agreement with the 
theoretical image. The three letters, I, N and O are clearly seen 
as well as details of the rectroflective structure (diagonal lines). 

It can also be observed that the diffusing black diffusing 
wood board is imaged. This is an excellent result since 
diffusing materials exhibit much lower reflective properties. 
This is also the very first step toward the use of SAL in a wide 
range of applications.. Speckle can also be observed, as 
expected from a coherent imaging system. 

Quantitative analysis of the image further shows that the 
resolution obtained is better than 300 μm in range and 80 μm in 
azimuth which compare nicely to the theoretical values of 255 
μm and 57 μm respectively.

IV. CONCLUSIONS

A synthetic aperture lidar laboratory prototype was built 
and tested. The raw data generated by the SAL head were 
further processed optronically and compared with digitally 
processed images. The results obtained showed good 
agreement between the experimental and theoretical 
resolutions. Furthermore images were obtained from both 
diffusive and retro-reflective materials opening the door to a 
wide range of surveillance application. The optronic processor 
is ideally suited for the large data throughput that will be 
generated by future SAL sensors.
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