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ABSTRACT  

Cardiac CT exams are some of the most complex CT exams due to need to carefully time the scan to capture the heart 

during the quiescent cardiac phase and when the contrast bolus is at its peak concentration. We are interested in developing 

a robust and autonomous cardiac CT protocol, using deep learning approaches to extract contrast timing and cardiac phase 

timing directly from pulsed projections. In this paper, we present a new approach to generate large amounts of clinically 

realistic virtual data for training deep learning networks. 

We propose a five-dimensional cardiac model generated from 4D cardiac coronary CT angiography (CTA) data for 

synthetic contrast bolus dynamics and patient ECG profiles. We apply deep learning to segment 7 heart compartments and 

simulate intravenous contrast propagation through each compartment to insert contrast bolus. Additional augmentation 

techniques by randomizing a bolus curve, patient ECG profile, acquisition timing, and patient motion are applied to 

increase the amount of data that can be generated. We demonstrate good performance of the deep learning segmentation 

network, examples of simulated bolus curves using a realistic protocol, and good correspondence between virtually 

generated projections and real projections from patient scans.  
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1. INTRODUCTION  

Cardiac CT exams such as Coronary CT Angiography (CTA) are some of the most complex CT exams due to need to 

carefully time the scan to capture the heart during the quiescent cardiac phase (when the heart is moving least) and when 

the contrast bolus in the heart chambers is at its peak concentration to achieve good contrast enhancement. 

Timing the CT scan to coincide with the peak contrast concentration can be done using a ‘timing bolus’ or with ‘bolus 

tracking’. With a timing bolus, a small volume of contrast is injected to a patient in a pre-session and repeated single slice 

axial collimated low-dose scans are performed to establish the timing delay between the start of injection and peak 

enhancement. Then the diagnostic cardiac CTA exam is performed with the full contrast bolus and the CT scan start after 

this timing delay. With bolus tracking, there is no pre-session: the full contrast bolus volume is injected, and single slice 

axial collimated scans are performed until the CT number in a region-of-interest reaches a predefined threshold. During 

the following ‘diagnostic delay’ of several seconds, the scan table is repositioned, breath hold instructions are delivered, 

and the scanner is reconfigured, after which the diagnostic CTA scan is performed. Both approaches have pros and cons, 

and require highly trained operators to achieve consistent bolus enhancement. 

The quiescent phase of the cardiac cycle is typically estimated based on recordings from an ECG monitor and evaluated 

by visually assessing the degree of motion artifact on reconstructed cardiac CTA images. Based on the ECG R-peaks, the 
time of the next end-diastolic phase (or end-systolic phase for higher heart rates) is estimated [1]. Application of the ECG 

may take several minutes per exam and in some patients may lead to reliability problems, such as due improper lead 

positioning. 

Our overall project goal is to develop a smart cardiac CT scanner that autonomously determines the optimal scan time 

interval without ECG, traditional bolus tracking or timing bolus, but based on real-time deep learning analytics of sparsely 
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pulsed projections [2, 3]. However, one of the challenges to developing deep learning algorithms is collecting enough data 

to train without exposing volunteers to ionizing radiation. To address this challenge, we here present a new approach to 

generate virtual CT projection data at any view angle, bolus dynamics, and cardiac phase, based on a five-dimensional 

model of the cardiac CT volume, derived from retrospectively collected clinical images and using a series of data 

augmentation steps.  

2. METHODS  

Figure 1 shows an overview of our virtual data 

generation scheme. We first derive five-dimensional 

cardiac CT models from multi-phase clinical cardiac 

(cine) CT scans by segmenting the heart compartments 

and identifying a blood (or contrast) flow propagation 

map in each compartment. To model contrast 
concentration at multiple bolus time points from 

datasets that were acquired at (approximately) a single 

bolus time point, we segment the cardiac 

compartments, we parametrize the voxels inside those 

compartments based on their location along the flow 

direction, and then increment the voxel values to model 

different bolus distributions based on location and time 

point.   We then define multiple instantiations of CT 

exams based on specific timing of cardiac cycle, 

contrast bolus, and CT acquisition to generate virtual CT projection data. Each of the steps is described in detail in the 

next paragraphs. 

Clinical datasets: We retrospectively collected multiple phase (cine) cardiac CT data from 40 Transcatheter Aortic Valve 

Replacement (TAVR) patients. The data were acquired under IRB approval (IRB #191797X) at University of California 

San Diego using a GE Revolution CT scanner with a 16 cm z-coverage to image the whole heart in one rotation. ECG data 

was acquired simultaneously, and iodine contrast agent (bolus) was administered to each patient. Cine scan mode was used 

to image all cardiac phases, resulting in 1.1-1.4 sec scan times and covering at least one full R-R cycle. Phase-specific 

cardiac volumes were retrospectively reconstructed every 70ms. The image volume size was 512x512x256 voxels covering 

the full 50-cm-diameter field-of-view and 16 cm in the z direction. Approximately 15-20 volumes (phases) were 

reconstructed for each patient and the associated R-R% was extracted from the ECG. By interpolation, a cardiac CT image 

dataset can be extracted at any R-R%, which represents the fourth dimension in the five-dimensional model. 

Segmentation: A subset of 149 datasets representing multiple phases were selected from 28 different patients. For each 

dataset, 7 compartments were manually segmented: right atrium (RA), right ventricle (RV), pulmonary artery (PA), left 

atrium (LA), left ventricle (LV), ascending aorta (AA), and descending aorta (DA), resulting in 149 3D masks. The PA 
region was further segmented into three regions: main pulmonary artery (MPA), left pulmonary artery (LPA), and right 

pulmonary artery (RPA). Any overlap between two adjacent compartments is removed by assigning the overlap voxels to 

one of the compartments. Any gaps between two adjacent compartments are avoided by inserting a 3D cylinder padding 

between them. Figure 2 shows an example of the 

resulting compartment segmentations with color 

coding.  

Blood flow propagation labeling: We defined blood 

flow propagation labels by parametrizing the voxels 

inside the compartments based on their position along 

the blood flow (or bolus) propagation direction. The 

label assigned to each voxel are integer numbers that 
approximately represent how the blood propagates 

from RA to RV, and PA, then from LA to LV, to AA, 

and to DA. The propagation direction is determined by 

multiple reference points: the center-of-mass locations 

of each compartment and a set of touch points where 

 
Fig. 1: Overview of our virtual data generation scheme 

 
Fig. 2:  An example of manual segmentation. The left image contains right 

atrium (red), right ventricle (green), ascending aorta (pink), left atrium 

(purple), left ventricle (yellow), and descending aorta (light blue). The right 

image contains ascending aorta (pink), main pulmonary artery (light red), 

left pulmonary artery (light green), and right pulmonary artery (light 

purple), and descending aorta (light blue). 
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each pair of compartments touch each other. From the manual segmentation masks, we first find touch points between 

RA-RV (RAV touch), RV-PA (ROV touch), LA-LV (LAV touch), and LV-AA (LOV touch), where O refers to an 

outgoing vessel from a ventricle. 

We developed two blood propagation models depending on the compartment. For RA, LA, PA, AA, and DA, a ‘linear 

propagation model’ is used. For RA, we assign linearly increasing values along the line which passes from the center-of-
mass of the atrium (RActr) to the RAV touchpoint. Then, each voxel is labeled based on its projected location on the line, 

normalized from 100 to 199, such that the blood flow mask value increases linearly in the direction from 100 at the entrance 

to 199 at the exit of the atrium. Similarly, the LA voxels are labeled from 400 to 499. For PA, we find the end of the LPA 

branch and the end of RPA branch by identifying maximum distance from ROV touch. Then, voxels are labeled linearly 

from 300 at ROV touch to 399 at the end of the LPA and the RPA. For AA, the direction for linear propagation is defined 

by the line from LOV touch through the center of the AA (AActr) and voxels are labeled from 600 to 699. For DA, 

assuming that DA is a straight vessel running in z direction, the voxels are labeled from 700 at the maximum z to the pixel 

to 799 at the minimum z position. For RV and LV, an ‘angular propagation model’ was developed. First a rotation center 

point was defined outside of the ventricle, triangulated from the center-of-mass of the ventricle (Vctr) and the two adjacent 

touch points. Then an angle is computed for each voxel relative to that line, encoding a circular path. Voxels are labeled 

from 200 to 299 in the RV and from 500 to 599 in the LV.  

Blood flow propagation labels were computed for all 149 segmented volumes and will be used for deep learning network 

training and validation, as described in the next section. 

Deep learning segmentation and blood flow propagation labeling: We trained a 3D Unet [4] (Figure 3) to perform both 

segmentation and voxel labeling to model the blood propagation direction. The input to Unet are patient images, truncated 

to a 30cm field-of-view and then downsampled to (152x152x64). The network has two output of the same size. The first 

output is the probability prediction for a voxel to be 

inside the bloodpool (i.e. one of the 7 compartments). 

The second output volume is the voxel label prediction. 

Finally, both output volumes are combined by setting 

zero to all voxel coordinates that have less than 50% 

probability, and the resulting volume is upsampled to 

the original voxel size. 

A two-part loss function was used with one part being a 

mean squared error on the voxel labels.  Outside the 

ground truth mask, this error was set to zero. The second 

part of the loss function was a piecewise linear function 

on the absolute error of the mask output.  This function has three sections, with the steep portion residing between 0.4 and 

0.6. 

Bolus dynamics definition: The obtained volumes are preprocessed to remove the estimated real average bolus level from 

all compartments and then adding in the simulated bolus level. A simulated bolus time sequence B(t) is defined by the 

parameters in Figure 4. The bolus curve remains 0 HU for a given Bolus Delay, rises from 0 HU to Bolus Height during 

the Bolus Rise Time (with a cosine shape), remains at Bolus Height for the Bolus Peak Width, decays from Bolus Height 

to Converged Bolus Level during the Bolus Decay Time (with a cosine shape), and remains at Converged Bolus Level for 

the remainder of the time. 

The new bolus level is assigned to voxels based on the current simulated scan time and the delay associated with each 

voxel location. The time delays at the compartment 

boundaries are set to 0RR, 0.5RR, 1.0 RR, and 1.5RR 

for the right side of the heart, where RR refers to the R-

to-R interval. The pulmonary circulation delay is then 

added before re-entering the left heart side, after which 

the following set of additional delays are applied 0RR, 

0.5RR, 1.0 RR, 1.5RR and 1.8RR for the compartment 

boundaries on the left side of the heart. To implement 

dispersion of bolus in the left cardiac region relative to 

the right cardiac region, a trapezoid filter is applied. That means the bolus levels for RA, RV, and PA follow the original 

 
Fig. 3:  Neural network architecture to generate a blood flow mask 

Fig. 4:  Bolus curve definition by parameters 
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bolus curve, and the bolus levels for LA, LV, AA, and DA follow the dispersed bolus curve. We also scaled all delays by 

a random number between [0.3 0.55]. For this particular study we also averaged the bolus curve over each period between 

two time points at neighboring compartment boundaries and assigned the average value uniformly to each compartment. 

In future work, this model will be refined to better model realistic behavior in discussion with experts in cardiac blood 

flow.  

Protocol instantiation: We simulate series of acquisitions by randomly selecting a patient, acquisition time points, cardiac 

conditions, bolus curve parameters, and patient rigid motion parameters. In this study, only anterior-posterior (AP) and 

posterior-anterior (PA) view acquisitions are simulated with 125 rotations. The rotation time is set to 0.28 sec, therefore 

data is acquired every 0.14 sec and the total scan time is 35 sec.  For each instantiation, we randomly select a bolus curve 

and a cardiac condition. Table 1 and 2 summarize the value range of bolus curve parameters and cardiac motion parameters. 

For each acquisition time point 𝑡𝑎𝑞, we find two closest R-peaks time (𝑡𝑅1, 𝑡𝑅2) from the patient’s ECG to compute 𝑅𝑅% =

(𝑡𝑎𝑞 − 𝑡𝑅1)/(𝑡𝑅2 − 𝑡𝑅1). We then interpolate a new dataset from the original patient dataset based on the respective RR%. 

In this study, we used nearest neighbor interpolation.  

Extrapolation, Augmentation, and Reprojection: 

The voxels outside cone beam are extrapolated from the 

neighboring slice if available. Extra z slices are also 

padded on the top and bottom by repeating the boundary 

slice to prevent boundary artifacts during forward-

projection. Then, a random rigid motion augmentation 

was performed per patient by rotation, scaling and 

shifting to add more anatomy variation. Finally, we 
forward-projected the volumes using a distance-driven 

projector [5] and modeling a GE Revolution CT cone 

beam geometry. 

3. RESULTS  

Figure 5 shows a specific CT exam instance as a function of time. The top row shows the CT gantry rotation angle. The 

second row shows the patient ECG signal. The 7 colored curves show CT number averaged over each of the 7 cardiac 

compartments. For each curve, we can clearly observe a rising edge, a plateau, and a more gradual decay. The large delay 
between compartments in the right left sides of the heart is due to the pulmonary circulation. For the same reason there is 

some additional dispersion in the curves for the left side of the heart. The bottom row shows the time of the injection, the 

start of the pulsed-mode projections (PMPs), the breath-hold command, and the actual CTA scan. Note that the gantry 

rotation angle, ECG signal, and PMPs are shown for illustration purpose. The spacing is not exact. 

Figure 6 shows example CT images and the corresponding compartment segmentation and blood flow propagation labels. 

The color coding reflects the integer labels from 100 to 799. 

Table 1:  Bolus curve parameters  

Parameter  Value range  

Bolus Delay  [0.5, 3.5] sec 

Bolus Rise Time [2, 12.5] sec 

Bolus Peak Width [1.0, 7.0] sec 

Bolus Decay Time [7.0, 15.0] sec 

Converged Bolus Level [15, 65]% of peak height 

Bolus Height  [120 180]% 

Trapezoid filter full-width [60, 95]% of pulmonary circ delay 

Table 2:  Cardiac motion parameters 

Parameter  Value range  

Heart rate [40, 75] bpm 

RR% offset at scan start [0, 1] 

Pulmonary circulation delay [4.0, 9.0] sec 

 

 

 
Fig. 5:  Example of a CT exam instance as a function of time. From top to 

bottom: gantry rotation angle, ECG signal, average CT number in the 7 

cardiac compartments, and the timing of injection (INJ), pulsed-mode 

projections, (PMPs), breath-hold command (BHC), and CTA scan. 

 
Fig. 6:  Four example CT images and corresponding segmentation 

and blood flow propagation labels: the two training examples show 

the analytically computed labels (top row) and the two test examples 

show the inferred values (bottom row). 
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The top row shows two examples of CT images and the 

corresponding the labels, which were analytically 

generated. The bottom row shows two test CT images with 

the inferred segmentation and integer labels. The cardiac 

regions were quite accurately segmented, and the blood 
flow propagation labels in seven compartments were 

visually similar to the training examples from the top row. 

Figure 7 shows a sequence of AP projections, comparing 

real measurements (left) and virtual projections (right). 

The top row shows the first actual projections in the 

sequence. The next 4 rows show the difference images of 

the subsequent projections, i.e.: subtracting the first 

projection in the respective sequence. In the real data, the 

heart rate was 58.5 bpm and the cardiac phase was 0.89, 

0.17, 0.44, 0.71, and 0.99 %RR from the top to bottom. 

The simulated data was generated using used these same 

parameters. Bolus insertion and motion augmentation 
were skipped. The simulated projections visually match 

the real projections quite well. More work is needed to 

verify the accuracy of the virtual bolus insertion. 

 

 

4. CONCLUSION  

In this paper, we proposed an innovative method to generate large amounts of virtual but clinically realistic cardiac CT 

projection data. Our approach used a five-dimensional model of the cardiac CT volume derived from multi-phase 3D 

cardiac CT images with programmable bolus dynamics and cardiac phases. This dataset could be used to train a real-time 

deep learning network which determines the optimal scan time from raw data without ECG and traditional bolus tracing 

or timing bolus.  
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Fig. 7:  Comparison between real projections (left) and simulated 

projections (right) for a sequence of AP projections. The first row in the 

sequence shows the first AP projection. The next rows show subsequent 

AP projections after subtracting the first projection in the sequence. 
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